Mariusz Iwaniuk

1476 Reputation

14 Badges

9 years, 263 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are answers submitted by Mariusz Iwaniuk

For symbolic solver is hard to find a solution. With numerics it's easy.See attached file.

_equations.mw

More info in file:
 

Download integral.mw

 

Another ways:

1.Export to *.obj file and view in Online 3D Viewer.

Export("3dplot.obj", plot3d((x^2+y^2)/sqrt(x^2+y^2), x = -1 .. 1, y = -1 .. 1), base = homedir);

where homedir you can check by command:

kernelopts(homedir);

 

2.Export to *.stl file and view in Free online STL viewer:

Export("3dplot.stl", plot3d((x^2+y^2)/sqrt(x^2+y^2), x = -1 .. 1, y = -1 .. 1), base = homedir);

Almost is possible by Laplace Transform to find the solution of differenatial equation.

Problem is solving the nonlinear recurrence equation(See in worksheet at the end of page).
 

Download Laplace.mw

 

To insert Labels use CTRL+L on keyboard.


ode_problem.mw


 

restart

kernelopts(version)

`Maple 2018.2, X86 64 WINDOWS, Oct 23 2018, Build ID 1356656`

(1)

NULL

`assuming`([simplify(ln(r)*sin(k1*Pi*ln(r/Rs)/ln(r4/Rs))/r)], [Rs > 0, r4 > 0, r4 > Rs, k1::posint])

ln(r)*sin(k1*Pi*(ln(Rs)-ln(r))/(-ln(r4)+ln(Rs)))/r

(2)

`assuming`([int(ln(r)*sin(k1*Pi*(ln(Rs)-ln(r))/(-ln(r4)+ln(Rs)))/r, r = Rs .. r4)], [Rs > 0, r4 > 0, r4 > Rs, k1::posint])

-(ln(r4)-ln(Rs))*(ln(r4)*(-1)^k1-ln(Rs))/(Pi*k1)

(3)

NULL

evalf(eval(-(ln(r4)-ln(Rs))*(ln(r4)*(-1)^k1-ln(Rs))/(Pi*k1), [Rs = 2, r4 = 1, k1 = 3]))

-0.5097764806e-1

(4)

evalf(Int(eval(ln(r)*sin(k1*Pi*ln(r/Rs)/ln(r4/Rs))/r, [Rs = 2, r4 = 1, k1 = 3]), r = 2 .. 1))

-0.5097764806e-1

(5)

NULL

`assuming`([simplify(sin(k1*Pi*ln(r/Rs)/ln(r4/Rs))*(r/r4)^(m1*Pi*`τds`/d)/r)], [Rs > 0, r4 > 0, r4 > Rs, k1::posint, m1::posint, d > 0, `τds` > 0])

sin(k1*Pi*(ln(Rs)-ln(r))/(-ln(r4)+ln(Rs)))*r4^(-m1*Pi*`τds`/d)*r^((`τds`*Pi*m1-d)/d)

(6)

`assuming`([int(sin(k1*Pi*(ln(Rs)-ln(r))/(-ln(r4)+ln(Rs)))*r4^(-m1*Pi*`τds`/d)*r^((`τds`*Pi*m1-d)/d), r = Rs .. r4)], [Rs > 0, r4 > 0, r4 > Rs, k1::posint, m1::posint, d > 0, `τds` > 0])

d*(2*ln(Rs)^2*sin((1/2)*Pi*k1)*cos((1/2)*Pi*k1)*m1*`τds`-4*ln(Rs)*ln(r4)*sin((1/2)*Pi*k1)*cos((1/2)*Pi*k1)*m1*`τds`+2*ln(r4)^2*sin((1/2)*Pi*k1)*cos((1/2)*Pi*k1)*m1*`τds`+2*ln(Rs)*cos((1/2)*Pi*k1)^2*d*k1-2*ln(r4)*cos((1/2)*Pi*k1)^2*d*k1-ln(Rs)*d*k1+ln(r4)*d*k1-r4^(-m1*Pi*`τds`/d)*Rs^(m1*Pi*`τds`/d)*d*k1*ln(Rs)+r4^(-m1*Pi*`τds`/d)*Rs^(m1*Pi*`τds`/d)*d*k1*ln(r4))/(Pi*(ln(Rs)^2*m1^2*`τds`^2-2*ln(r4)*m1^2*`τds`^2*ln(Rs)+ln(r4)^2*m1^2*`τds`^2+d^2*k1^2))

(7)

`assuming`([simplify(combine(d*(2*ln(Rs)^2*sin((1/2)*k1*Pi)*cos((1/2)*k1*Pi)*m1*`τds`-4*ln(Rs)*ln(r4)*sin((1/2)*k1*Pi)*cos((1/2)*k1*Pi)*m1*`τds`+2*ln(r4)^2*sin((1/2)*k1*Pi)*cos((1/2)*k1*Pi)*m1*`τds`+2*ln(Rs)*cos((1/2)*k1*Pi)^2*d*k1-2*ln(r4)*cos((1/2)*k1*Pi)^2*d*k1-ln(Rs)*d*k1+ln(r4)*d*k1-r4^(-m1*Pi*`τds`/d)*Rs^(m1*Pi*`τds`/d)*d*k1*ln(Rs)+r4^(-m1*Pi*`τds`/d)*Rs^(m1*Pi*`τds`/d)*d*k1*ln(r4))/(Pi*(ln(Rs)^2*m1^2*`τds`^2-2*ln(r4)*m1^2*`τds`^2*ln(Rs)+ln(r4)^2*m1^2*`τds`^2+d^2*k1^2))))], [Rs > 0, r4 > 0, r4 > Rs, k1::posint, m1::posint, d > 0, `τds` > 0])

(ln(r4)-ln(Rs))*d^2*k1*(Rs^(m1*Pi*`τds`/d)*r4^(-m1*Pi*`τds`/d)-(-1)^k1)/(Pi*(ln(Rs)^2*m1^2*`τds`^2-2*ln(r4)*m1^2*`τds`^2*ln(Rs)+ln(r4)^2*m1^2*`τds`^2+d^2*k1^2))

(8)

NULL

evalf(eval((ln(r4)-ln(Rs))*d^2*k1*(Rs^(m1*Pi*`τds`/d)*r4^(-m1*Pi*`τds`/d)-(-1)^k1)/(Pi*(ln(Rs)^2*m1^2*`τds`^2-2*ln(r4)*m1^2*`τds`^2*ln(Rs)+ln(r4)^2*m1^2*`τds`^2+d^2*k1^2)), [Rs = 2, r4 = 1, k1 = 3, m1 = 2, d = 1/3, `τds` = 1/4]))

-1.786983541

(9)

evalf(Int(eval(sin(k1*Pi*ln(r/Rs)/ln(r4/Rs))*(r/r4)^(m1*Pi*`τds`/d)/r, [Rs = 2, r4 = 1, k1 = 3, m1 = 2, d = 1/3, `τds` = 1/4]), r = 2 .. 1))

-1.786983542

(10)

``


 

Download 2_integrals.mw

Probably pdsolve is designed to find only one solution not more.We can find more solution using packages PDEtools:

Download By_PDE-Tools.mw

 

int(convert(cos(2*x)/(1+2*sin(3*x)^2), exp), x = 0 .. Pi);

# 0

 

Using Rubi on Mathematica I have got a answer for case 3D.

See attached file for details:

Integral_3D.mw

 To reproduce the computation below in Maple 2018.1 you need to install theMaplesoft Physics Updates (version 134 or higher)


 

restart

kernelopts(version)

`Maple 2018.2, X86 64 WINDOWS, Oct 23 2018, Build ID 1356656`

(1)

Physics:-Version()

NULL

PackageTools:-Install("5137472255164416", version = 192, overwrite)

restart

PDE := d*cp*(diff(T(t, z), t)) = k*(diff(T(t, z), z, z))+Q

d*cp*(diff(T(t, z), t)) = k*(diff(diff(T(t, z), z), z))+Q

(2)

sol := pdsolve({PDE, T(0, z) = Tamb, (D[2](T))(t, 0) = -h*(-Tamb+T(t, 0))/k, (D[2](T))(t, 8) = 0})

T(t, z) = `casesplit/ans`(Int(Sum(-128*exp(-(1/64)*lambda[n]^2*k*(t-tau)/(cp*d))*(-(1/64)*lambda[n]*(d^(1/2)*cp^(1/2)*k^(5/2)*(k/(d*cp))^(1/2)*sin(d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)/k^(1/2))*lambda[n]+8*cos(d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)/k^(1/2))*h*k^2-8*k^2*h)*cos((1/8)*d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)*z/k^(1/2))+sin((1/8)*d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)*z/k^(1/2))*h*(d^(1/2)*cp^(1/2)*k^(1/2)*(k/(d*cp))^(1/2)*cos(d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)/k^(1/2))*h-d^(1/2)*cp^(1/2)*k^(1/2)*(k/(d*cp))^(1/2)*h+(1/8)*sin(d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)/k^(1/2))*k^2*lambda[n]))*Q*k^(1/2)/(d^(1/2)*cp^(1/2)*(k/(d*cp))^(1/2)*(16*d^(1/2)*cp^(1/2)*k^(3/2)*(k/(d*cp))^(1/2)*cos(d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)/k^(1/2))^2*h*lambda[n]+(k^3*lambda[n]^2-64*h^2*k)*sin(d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)/k^(1/2))*cos(d^(1/2)*cp^(1/2)*lambda[n]*(k/(d*cp))^(1/2)/k^(1/2))+64*(k/(d*cp))^(1/2)*lambda[n]*cp^(1/2)*d^(1/2)*(h^2*k^(1/2)+(1/64)*k^(5/2)*lambda[n]^2-(1/4)*k^(3/2)*h))), n = 0 .. infinity), tau = 0 .. t)+Tamb, {And(tan(lambda[n])*k^(1/2)*d^(1/2)*cp^(1/2)*(lambda[n]^2*k/(cp*d))^(1/2)+8*h = 0, -infinity <= lambda[n] and lambda[n] <= infinity), And(tan(lambda[n])*(k^2)^(1/4)*d^(1/2)*cp^(1/2)*(lambda[n]^2*(k^2)^(1/2)/(cp*d))^(1/2)+8*h = 0, -infinity <= lambda[n] and lambda[n] <= infinity)})

(3)

``


 

Download PDE.mw

UPDATED:

Physics package was fixed and now with version 195 works fine.

UPDATED 15.11.2018:

Solution with Physics:-Version 200:

PDE_with_Physics-version_200.mw

Thumb if You like.

Yes it's a Bug in KroneckerDelta function for m=4 it should be 0 not 1.

with(Physics, KroneckerDelta);

[seq(KroneckerDelta[m, 0], m = 0 .. 10)];

#[1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]

but It should be: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

See workaround in attached file:

Download bug.mw

 

Thumb if You like.

 

infolevel[IntegrationTools] := 3;

`assuming`([int(GAMMA(a, s)*exp(-b*s), s = 0 .. infinity)], [a > 0, b > 0]);

#Definite Integration:   Integrating expression on s=0..infinity
Definite Integration:   Using the integrators [distribution, piecewise, series, o, polynomial, ln, lookup, cook, ratpoly, elliptic, elliptictrig, meijergspecial, improper, asymptotic, ftoc, ftocms, meijerg, contour]
IntegralTransform LookUp Integrator:   Integral might be a laplace transform with expr=GAMMA(a,s) and s=b.
LookUp Integrator:   unable to find the specified integral in the table
Definite Integration:   Returning integral unevaluated.

 

Then we see Maple can't find in Table a Laplace Transform(?) ,but:

inttrans:-laplace(GAMMA(a, s), s, b);#Works fine

#GAMMA(a)*(1-(1+b)^(-a))/b

 

Thumb if You like.

 

If is indefine integral then is not possible.

More info in attached file.

integral.mw

 

INT := int(exp(-a^2-b^2-c^2), a = b^2/(4*c) .. infinity);

int(INT, b = -infinity .. infinity, c = 0 .. infinity, numeric);

#0.9786008283

 

Add option to roots: sqrt(2).

roots(x^3-x^2-8*x+8, sqrt(2));

#[[-2*sqrt(2), 1], [1, 1], [2*sqrt(2), 1]]

 

Thumb if You like.

First 7 8 9 10 11 12 13 Last Page 9 of 19