Mariusz Iwaniuk

1476 Reputation

14 Badges

9 years, 263 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are answers submitted by Mariusz Iwaniuk

Using CauchyPrincipalValue =true:

`assuming`([int(exp(I*x*t)/((x-a)*(x+a)), x = -infinity .. infinity, CauchyPrincipalValue = true)], [a > 0, t > 0])

#(1/2*I)*Pi*(exp(I*a*t)-exp(-I*a*t))/a

int.mw

Exectuted in Maple 2018.

remove[flatten](x-> x = 0, [seq(sin((1/4)*k*Pi), k = 1 .. 8)]);

The function RootOf is a placeholder for representing all the roots of an equation in one variable.  In particular, it is the standard representation for Maple algebraic numbers, algebraic functions.

For more info execute this code in Maple:

?RootOf
sol := solve({x^2+y^2 = 3, x^2+2*y^2 = 3}, {x, y});
allvalues(sol);
evalf(%);

#{x = sqrt(3), y = 0}, {x = -sqrt(3), y = 0}
#{x = 1.732050808, y = 0.}, {x = -1.732050808, y = 0.}

 


 

I don't know way it's happens,but if we convert to rational(exact) numbers then works:

 

   

eq := [190.0315457*d^6-7.601261828*d^4+344.0*c^2*d^2-2.677685950*c^4, 0.6830134554e-2*c^4+2084.317025*d^8-166.7453620*d^6+3.334907240*d^4-c^2*d^2];
eliminate(convert(eq, rational, exact), c);

#[{c = -(1/14265)*sqrt(13071106675-17435*sqrt(9667390500*d^2+561670891405))*d}, {121*d^4*(582104796124362625620*d^4-46433010457684955790*d^2+2932165094782*sqrt(9667390500*d^2+561670891405)-1272306087125807465)}], [{c = (1/14265)*sqrt(13071106675-17435*sqrt(9667390500*d^2+561670891405))*d}, {121*d^4*(582104796124362625620*d^4-46433010457684955790*d^2+2932165094782*sqrt(9667390500*d^2+561670891405)-1272306087125807465)}], [{c = -(1/14265)*sqrt(13071106675+17435*sqrt(9667390500*d^2+561670891405))*d}, {-121*d^4*(-582104796124362625620*d^4+46433010457684955790*d^2+2932165094782*sqrt(9667390500*d^2+561670891405)+1272306087125807465)}], [{c = (1/14265)*sqrt(13071106675+17435*sqrt(9667390500*d^2+561670891405))*d}, {-121*d^4*(-582104796124362625620*d^4+46433010457684955790*d^2+2932165094782*sqrt(9667390500*d^2+561670891405)+1272306087125807465)}]

 


 

NULL

latex(a[p, q] = 'sum(cos(2*Pi*(p+1)*(n-1)/q), n = 1 .. q)')

a_{{p,q}}=\sum _{n=1}^{q}\cos \left( 2\,{\frac {\pi\, \left( p+1
 \right)  \left( n-1 \right) }{q}} \right)

 

NULL

latex(a[p, q] = Sum(cos(2*Pi*(p+1)*(n-1)/q), n = 1 .. q))

a_{{p,q}}=\sum _{n=1}^{q}\cos \left( 2\,{\frac {\pi\, \left( p+1
 \right)  \left( n-1 \right) }{q}} \right)

 

NULL

latex(a[p, q] = Sum(cos(2*Pi*(p+1)*(n-1)/q), n = 1 .. q))

a_{{p,q}}=\sum _{n=1}^{q}\cos \left( 2\,{\frac {\pi\, \left( p+1
 \right)  \left( n-1 \right) }{q}} \right)

 


 

Download Latex_Sum.mw

pdsolve([diff(f2(lam, mu, l, m), m)-(diff(f1(lam, mu, l, m), l))-(diff(f4(lam, mu, l, m), mu))+diff(f3(lam, mu, l, m), lam) = 0, diff(f1(lam, mu, l, m), m)+diff(f2(lam, mu, l, m), l)-(diff(f3(lam, mu, l, m), mu))-(diff(f4(lam, mu, l, m), lam)) = 0], HINT = `+`);

#A simple solutions.

pdsolve([diff(f2(lam, mu, l, m), m)-(diff(f1(lam, mu, l, m), l))-(diff(f4(lam, mu, l, m), mu))+diff(f3(lam, mu, l, m), lam) = 0, diff(f1(lam, mu, l, m), m)+diff(f2(lam, mu, l, m), l)-(diff(f3(lam, mu, l, m), mu))-(diff(f4(lam, mu, l, m), lam)) = 0], HINT = TWS(sin));

#Not simple solution.For more info. execute this code below?

?pdsolve

 

Probably you want:

with(Fractals:-LSystem); with(LSystemExamples):

PlotExample(DragonCurve, 15);

Lindenmayer System Plot Generator:

states := "FX";

rules := ["Y" = "FX-Y", "X" = "X+YF"];

cons := ["F" = "draw:1", "+" = "turn:-90", "-" = "turn:90"];

newstate1 := Iterate(states, rules, 10);

LSystemPlot(newstate1, cons);

EDITED:

Code from book Geometry of Curves and Surfaces with MAPLEhttps://books.google.pl/books/about/Geometry_of_Curves_and_Surfaces_with_MAP.html?id=78w0CseXgvMC&redir_esc=y

dragon := proc (k::algebraic, N::integer) local t, i, q1, q2, q3, q4, d; global p; q2 := [k, 0]; q3 := [1-k, 0]; d := evalm(q3-q2); p[0] := plot([[q2[1], q2[2]], [q3[1], q3[2]]]); for i to N do if `mod`(i, 2) = 0 then t[i] := t[(1/2)*i] else t[i] := (`mod`(i, 4))-2 end if; q4 := evalm(q3+k*d/(1-2*k)); d := evalm(t[i]*[d[2], -d[1]]); q1 := evalm(q3); q2 := evalm(q4+k*d/(1-2*k)); q3 := evalm(q2+d); p[i] := plot([[q1[1], q1[2]], [q2[1], q2[2]], [q3[1], q3[2]]]) end do; return plots:-display([seq(p[i], i = 0 .. N)]) end proc;

dragon(0.1, 500);

 

f := x^2*y^2+3*x*y^2;

fdiff(f, [x, y], {x = 1, y = 2});

See in Help for more information,exectute code below:

?fdiff 

 

restart;

de := diff(y(t), t, t) = -1; ic := y(0) = 1, (D(y))(0) = 0;

Events := [y(t), diff(y(t), t) = -.5*(diff(y(t), t))];

Events2 := [y(t) = -2*(1/1000), halt];

dsol := dsolve({de, ic}, numeric, events = [Events, Events2], range = 0 .. 5);

plots[odeplot](dsol, thickness = 3, color = red)

 

You can do it numerically:

c[1]:=1;
c[2]:=1;
int(12.*x^3*c[2]+6.*x^2*c[1]+x^2*exp(x^3*c[2])*exp(x^2*c[1]), x = 0. .. 1.,numeric);

#6.155281446

 

If you looking a analyticaly solution it's probably not possible.

See :https://en.wikipedia.org/wiki/Integral#Symbolic

 

PDE := diff(f(x, y), x, x)+diff(f(x, y), y, y) = 0;
sol := PDEtools:-SimilaritySolutions(PDE);
sol[1];

OR:

pdsolve(PDE, HINT = `+`, build);
pdsolve(PDE, HINT = `*`, build);

 

I doubt there's a closed form for the integral for general variables.

Only for a=0,1 and k=-1,0,1,2,3. can be found:

 

By Maple 2018.

sol := x*a*k*((x-g)/b)^(a-1)*(1+((x-g)/b)^a)^(k+1)/b;

`assuming`([[seq([int(eval(sol, a = j), x = g .. t)], j = 0 .. 1)]], [a > 0, b > 0, k in integer, k > 0, g > 0, t > 0]);

#[[0], [k*(-g*k+b^(-k)*(b-g+t)^k*k*t-2*b^(-k-1)*(b-g+t)^k*g*k*t+2*b^(-k-1)*(b-g+t)^k*t^2*k+b^(-k-2)*(b-g+t)^k*g^2*k*t-2*b^(-k-2)*(b-g+t)^k*t^2*k*g+b^(-k-2)*(b-g+t)^k*t^3*k+b-3*g-b^(-k+1)*(b-g+t)^k+3*b^(-k)*(b-g+t)^k*g-3*b^(-k-1)*(b-g+t)^k*g^2+3*b^(-k-1)*(b-g+t)^k*t^2+b^(-k-2)*(b-g+t)^k*g^3-3*b^(-k-2)*(b-g+t)^k*t^2*g+2*b^(-k-2)*(b-g+t)^k*t^3)/(k^2+5*k+6)]]


`assuming`([[seq([int(eval(sol, k = j), x = g .. t)], j = -1 .. 3)]], [a > 0, b > 0, g > 0, t > 0, a > 0]);

#[[-b^(-a)*(t-g)^a*(a*t+g)/(a+1)], [0], [(6*b^(-3*a)*(t-g)^(3*a)*a^3*t+2*b^(-3*a)*(t-g)^(3*a)*a^2*g+9*b^(-3*a)*(t-g)^(3*a)*a^2*t+18*b^(-2*a)*(t-g)^(2*a)*a^3*t+3*b^(-3*a)*(t-g)^(3*a)*a*g+3*b^(-3*a)*(t-g)^(3*a)*a*t+9*b^(-2*a)*(t-g)^(2*a)*a^2*g+24*b^(-2*a)*(t-g)^(2*a)*a^2*t+18*b^(-a)*(t-g)^a*a^3*t+b^(-3*a)*(t-g)^(3*a)*g+12*b^(-2*a)*(t-g)^(2*a)*a*g+6*b^(-2*a)*(t-g)^(2*a)*a*t+18*b^(-a)*(t-g)^a*a^2*g+15*b^(-a)*(t-g)^a*a^2*t+3*g*b^(-2*a)*(t-g)^(2*a)+15*b^(-a)*(t-g)^a*a*g+3*b^(-a)*(t-g)^a*a*t+3*g*b^(-a)*(t-g)^a)/(3*(6*a^3+11*a^2+6*a+1))], [(168*b^(-3*a)*(t-g)^(3*a)*a^3*t+56*b^(-3*a)*(t-g)^(3*a)*a^2*g+84*b^(-3*a)*(t-g)^(3*a)*a^2*t+228*b^(-2*a)*(t-g)^(2*a)*a^3*t+28*b^(-3*a)*(t-g)^(3*a)*a*g+12*b^(-3*a)*(t-g)^(3*a)*a*t+114*b^(-2*a)*(t-g)^(2*a)*a^2*g+96*b^(-2*a)*(t-g)^(2*a)*a^2*t+104*b^(-a)*(t-g)^a*a^3*t+48*b^(-2*a)*(t-g)^(2*a)*a*g+12*b^(-2*a)*(t-g)^(2*a)*a*t+104*b^(-a)*(t-g)^a*a^2*g+36*b^(-a)*(t-g)^a*a^2*t+36*b^(-a)*(t-g)^a*a*g+4*b^(-a)*(t-g)^a*a*t+4*b^(-3*a)*(t-g)^(3*a)*g+6*g*b^(-2*a)*(t-g)^(2*a)+4*g*b^(-a)*(t-g)^a+11*b^(-4*a)*(t-g)^(4*a)*a^2*g+24*b^(-4*a)*(t-g)^(4*a)*a^2*t+6*b^(-4*a)*(t-g)^(4*a)*a*g+4*b^(-4*a)*(t-g)^(4*a)*a*t+96*b^(-a)*(t-g)^a*a^3*g+24*b^(-4*a)*(t-g)^(4*a)*a^4*t+6*b^(-4*a)*(t-g)^(4*a)*a^3*g+44*b^(-4*a)*(t-g)^(4*a)*a^3*t+96*b^(-3*a)*(t-g)^(3*a)*a^4*t+32*b^(-3*a)*(t-g)^(3*a)*a^3*g+144*b^(-2*a)*(t-g)^(2*a)*a^4*t+72*b^(-2*a)*(t-g)^(2*a)*a^3*g+96*b^(-a)*(t-g)^a*a^4*t+b^(-4*a)*(t-g)^(4*a)*g)/(2*(24*a^4+50*a^3+35*a^2+10*a+1))], [(3*(b^(-5*a)*(t-g)^(5*a)*g+600*b^(-a)*(t-g)^a*a^4*g+600*b^(-a)*(t-g)^a*a^5*t+120*b^(-5*a)*(t-g)^(5*a)*a^5*t+1470*b^(-3*a)*(t-g)^(3*a)*a^3*t+490*b^(-3*a)*(t-g)^(3*a)*a^2*g+360*b^(-3*a)*(t-g)^(3*a)*a^2*t+1180*b^(-2*a)*(t-g)^(2*a)*a^3*t+120*b^(-3*a)*(t-g)^(3*a)*a*g+30*b^(-3*a)*(t-g)^(3*a)*a*t+590*b^(-2*a)*(t-g)^(2*a)*a^2*g+260*b^(-2*a)*(t-g)^(2*a)*a^2*t+355*b^(-a)*(t-g)^a*a^3*t+130*b^(-2*a)*(t-g)^(2*a)*a*g+20*b^(-2*a)*(t-g)^(2*a)*a*t+355*b^(-a)*(t-g)^a*a^2*g+70*b^(-a)*(t-g)^a*a^2*t+70*b^(-a)*(t-g)^a*a*g+5*b^(-a)*(t-g)^a*a*t+10*b^(-3*a)*(t-g)^(3*a)*g+10*g*b^(-2*a)*(t-g)^(2*a)+5*g*b^(-a)*(t-g)^a+205*b^(-4*a)*(t-g)^(4*a)*a^2*g+220*b^(-4*a)*(t-g)^(4*a)*a^2*t+55*b^(-4*a)*(t-g)^(4*a)*a*g+20*b^(-4*a)*(t-g)^(4*a)*a*t+770*b^(-a)*(t-g)^a*a^3*g+1220*b^(-4*a)*(t-g)^(4*a)*a^4*t+305*b^(-4*a)*(t-g)^(4*a)*a^3*g+820*b^(-4*a)*(t-g)^(4*a)*a^3*t+2340*b^(-3*a)*(t-g)^(3*a)*a^4*t+780*b^(-3*a)*(t-g)^(3*a)*a^3*g+2140*b^(-2*a)*(t-g)^(2*a)*a^4*t+1070*b^(-2*a)*(t-g)^(2*a)*a^3*g+770*b^(-a)*(t-g)^a*a^4*t+5*b^(-4*a)*(t-g)^(4*a)*g+24*b^(-5*a)*(t-g)^(5*a)*a^4*g+250*b^(-5*a)*(t-g)^(5*a)*a^4*t+50*b^(-5*a)*(t-g)^(5*a)*a^3*g+175*b^(-5*a)*(t-g)^(5*a)*a^3*t+35*b^(-5*a)*(t-g)^(5*a)*a^2*g+50*b^(-5*a)*(t-g)^(5*a)*a^2*t+10*b^(-5*a)*(t-g)^(5*a)*a*g+5*b^(-5*a)*(t-g)^(5*a)*a*t+600*b^(-4*a)*(t-g)^(4*a)*a^5*t+150*b^(-4*a)*(t-g)^(4*a)*a^4*g+1200*b^(-3*a)*(t-g)^(3*a)*a^5*t+400*b^(-3*a)*(t-g)^(3*a)*a^4*g+1200*b^(-2*a)*(t-g)^(2*a)*a^5*t+600*b^(-2*a)*(t-g)^(2*a)*a^4*g))/(5*(120*a^5+274*a^4+225*a^3+85*a^2+15*a+1))]]

 

Mathematica 11.3 can find solution for: - infinity > a >= 2 and -1<= k < infinity

 

 


 

restart

ODE := ((D@@2)(x))(tau)+(1+a^2*x(tau)^2)*x(tau) = 0

((D@@2)(x))(tau)+(1+a^2*x(tau)^2)*x(tau) = 0

(1)

sol := dsolve(ODE, Lie)

Intat(-2/(-2*_a^4*a^2-4*_a^2+4*_C1)^(1/2), _a = x(tau))-tau-_C2 = 0, Intat(2/(-2*_a^4*a^2-4*_a^2+4*_C1)^(1/2), _a = x(tau))-tau-_C2 = 0

(2)

ans := sol[2]

Intat(2/(-2*_a^4*a^2-4*_a^2+4*_C1)^(1/2), _a = x(tau))-tau-_C2 = 0

(3)

eq := diff(ans, tau)

2*(diff(x(tau), tau))/(-2*a^2*x(tau)^4-4*x(tau)^2+4*_C1)^(1/2)-1 = 0

(4)

eq1 := solve(eq, diff(x(tau), tau))

(1/2)*(-2*a^2*x(tau)^4-4*x(tau)^2+4*_C1)^(1/2)

(5)

eq2 := eval(eq1, x(tau) = y)

(1/2)*(-2*a^2*y^4-4*y^2+4*_C1)^(1/2)

(6)

eq3 := eval(eq2, y = A)

(1/2)*(-2*A^4*a^2-4*A^2+4*_C1)^(1/2)

(7)

_C1 := solve(eq3, _C1)

(1/2)*A^4*a^2+A^2

(8)

eq4 := eq2

(1/2)*(2*A^4*a^2-2*a^2*y^4+4*A^2-4*y^2)^(1/2)

(9)

T := `assuming`([4*(int(1/eq4, y = 0 .. A))/omega], [a > 0, A > 0, x > 0, y > 0, y < A, x < A])

4*2^(1/2)*EllipticK(A*a/(2*A^2*a^2+2)^(1/2))/(omega*(2*A^2*a^2+2)^(1/2))

(10)

k := op([5, 1], T)

A*a/(2*A^2*a^2+2)^(1/2)

(11)

tau := `assuming`([omega*t = int(1/eq4, y = x .. A)], [a > 0, A > 0, x > 0, y > 0, y < A, x < A])

omega*t = 2^(1/2)*EllipticF((A^2-x^2)^(1/2)/A, A*a/(2*A^2*a^2+2)^(1/2))/(2*A^2*a^2+2)^(1/2)

(12)

eq5 := solve(tau, x)

(1-JacobiSN((1/2)*omega*t*(2*A^2*a^2+2)^(1/2)*2^(1/2), A*a/(2*A^2*a^2+2)^(1/2))^2)^(1/2)*A, -(1-JacobiSN((1/2)*omega*t*(2*A^2*a^2+2)^(1/2)*2^(1/2), A*a/(2*A^2*a^2+2)^(1/2))^2)^(1/2)*A

(13)

X := eq5[1]

(1-JacobiSN((1/2)*omega*t*(2*A^2*a^2+2)^(1/2)*2^(1/2), A*a/(2*A^2*a^2+2)^(1/2))^2)^(1/2)*A

(14)

u := (1/2)*omega*t*sqrt(2*A^2*a^2+2)*sqrt(2)NULL

(1/2)*omega*t*(2*A^2*a^2+2)^(1/2)*2^(1/2)

(15)

XX := eval(X, JacobiSN(u, k)^2 = 1-JacobiCN(u, k)^2)

(JacobiCN((1/2)*omega*t*(2*A^2*a^2+2)^(1/2)*2^(1/2), A*a/(2*A^2*a^2+2)^(1/2))^2)^(1/2)*A

(16)

XXX := simplify(XX, sqrt, symbolic)

JacobiCN((1/2)*omega*t*(2*A^2*a^2+2)^(1/2)*2^(1/2), A*a/(2*A^2*a^2+2)^(1/2))*A

(17)

NULL


 

Download The_Hard_Spring_by_Maple_2018.mw

sol := `assuming`([dsolve(Eq2 = 0)], [phi(xi) > 0]);
with(DEtools);
odeadvisor(op([2, 2], sol)[1, 1]);

dsolve can't solve symbolical Abel's equation. Try numerically.

 I invert that laplace transform numerically,but answer is different than :(section 4.1 page 13629, data used for FIG. 3 )


 

restart

Digits := 100

100

(1)

CK := .3; Z := 10; L := 1; alpha := .95; ZetaR := 10

.3

 

10

 

1

 

.95

 

10

(2)

r1 := proc (s) options operator, arrow; (1/2)*(L*s^2+sqrt(L^2*s^4+4*s^(-alpha+3)*(CK+(CK*Z+1)*s+Z*s^2)*(1+s+(1/2)*s^2)))/(s^(-alpha+1)*(CK+(CK*Z+1)*s+Z*s^2)) end proc

proc (s) options operator, arrow; (1/2)*(L*s^2+sqrt(L^2*s^4+4*s^(-alpha+3)*(CK+(CK*Z+1)*s+Z*s^2)*(1+s+(1/2)*s^2)))/(s^(-alpha+1)*(CK+(CK*Z+1)*s+Z*s^2)) end proc

(3)

r2 := proc (s) options operator, arrow; (1/2)*(L*s^2-sqrt(L^2*s^4+4*s^(-alpha+3)*(CK+(CK*Z+1)*s+Z*s^2)*(1+s+(1/2)*s^2)))/(s^(-alpha+1)*(CK+(CK*Z+1)*s+Z*s^2)) end proc

proc (s) options operator, arrow; (1/2)*(L*s^2-sqrt(L^2*s^4+4*s^(-alpha+3)*(CK+(CK*Z+1)*s+Z*s^2)*(1+s+(1/2)*s^2)))/(s^(-alpha+1)*(CK+(CK*Z+1)*s+Z*s^2)) end proc

(4)

c := proc (n, i) options operator, arrow; (-1)^(i+(1/2)*n)*(sum(evalf(k^((1/2)*n)*factorial(2*k)/(factorial((1/2)*n-k)*factorial(k)*factorial(k-1)*factorial(i-k)*factorial(2*k-i))), k = floor((1/2)*i+1/2) .. min(i, (1/2)*n))) end proc

INVLAP := proc (f, s, t, n) if type(n, even) then return evalf(ln(2)*(sum(c(n, i)*(eval(f, s = i*ln(2)/t)), i = 1 .. n))/t) else return 0 end if end proc

R1 := proc (beta) options operator, arrow; INVLAP(r1(s), s, beta, 20) end proc

proc (beta) options operator, arrow; INVLAP(r1(s), s, beta, 20) end proc

(5)

R1(1)

-0.1541362927375609459212764576340201403535836302397525888029243229676698002949846272721795130378111302e-1

(6)

R2 := proc (beta) options operator, arrow; INVLAP(r2(s), s, beta, 20) end proc

proc (beta) options operator, arrow; INVLAP(r2(s), s, beta, 20) end proc

(7)

R2(1)

-0.9553862141072868790424645051586718244791894211562423732209924901761210733190720403974860481626895380e-2

(8)

theta := proc (Zeta, beta) options operator, arrow; exp(R2(beta)*ZetaR)*exp(R1(beta)*Zeta)/(exp(R2(beta)*ZetaR)-exp(R1(beta)*ZetaR))-exp(R1(beta)*ZetaR)*exp(R2(beta)*Zeta)/(exp(R2(beta)*ZetaR)-exp(R1(beta)*ZetaR)) end proc

proc (Zeta, beta) options operator, arrow; exp(R2(beta)*ZetaR)*exp(R1(beta)*Zeta)/(exp(R2(beta)*ZetaR)-exp(R1(beta)*ZetaR))-exp(R1(beta)*ZetaR)*exp(R2(beta)*Zeta)/(exp(R2(beta)*ZetaR)-exp(R1(beta)*ZetaR)) end proc

(9)

theta(2, 1)

.78023310949683032910207875270495938180505912081434286871303196902181168839514493744039058044012316

(10)

plot(theta(Zeta, 1), Zeta = 0 .. 10)

 

NULL

``

``

``


 

Download FracPDE_vers_2.mw

 

First 12 13 14 15 16 17 18 Page 14 of 19