Marvin Ray Burns

 I've been using Maple since 1997 or so.

MaplePrimes Activity


These are Posts that have been published by Marvin Ray Burns

The MRB constant Z will probably have several parts.

The following example is from the Maple help pages
> with(GraphTheory);
> with(SpecialGraphs);
> H := HypercubeGraph(3);
DrawGraph(H)
 
 


What I would like to do in the MRB constant z,  MRB constant z part2, and etc. is to draw a series of graphs that show the some of the geometry of the MRB constant.

See http://math-blog.com/2010/11/21/the-geometry-of-the-mrb-constant/. I would like to draw a tesseract of 4 units^4, a penteract of 5 units^5, etc and take an edge from each and line the edges up as in Diagram 3:

`` 

 

 

 

As usual I'm asking for your help.

``

``

 

Download May262012.mw

 

This post can be downloaded here:  Download May202012.mw

Below we have approximations involving the MRB constant. The MRB constant plus a fraction is saved as P while a combination of another constant is saved as Q. We then subtract Q from P and always have a very small result!

 

 

The MRB constant is evaluated by

 

with(numtheory):

f := proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = x .. infinity) end proc

proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = x .. infinity) end proc

(1)

What are the quotients  ot the  continued fration of the sum of f(1)+f(2)+f(3)+f(4)+...

Here are the  quotients  of some partial sums.

``

cfrac(evalf(sum(f(x), x = 1 .. 2)), 'quotients')

[0, 2, 1, 1, 1, 21, 10, 4, 1, 4, 8, `...`]

(2)

cfrac(evalf(sum(f(x), x = 1 .. 3)), 'quotients')

[0, 6, 1, 2, 3, 1, 1, 2, 3, 3, 24, `...`]

(3)

cfrac(evalf(sum(f(x), x = 1 .. 4)), 'quotients')

[0, 2, 1, 2, 1, 4, 2, 1, 3, 1, 1, `...`]

(4)

cfrac(evalf(sum(f(x), x = 1 .. 5)), 'quotients')

[0, 5, 1, 99, 1, 1, 1, 6, 1, 3, 1, `...`]

(5)

cfrac(evalf(sum(f(x), x = 1 .. 6)), 'quotients')

[0, 2, 1, 6, 1, 2, 1, 2, 2, 1, 1, `...`]

(6)

cfrac(evalf(sum(f(x), x = 1 .. 7)), 'quotients')

[0, 5, 1, 1, 142, 1, 1, 1, 1, 19, 1, `...`]

(7)

cfrac(evalf(sum(f(x), x = 1 .. 8)), 'quotients')

[0, 2, 1, 47, 1, 1, 1, 1, 27, 4, 1, `...`]

(8)

cfrac(evalf(sum(f(x), x = 1 .. 9)), 'quotients')

[0, 5, 5, 3, 1, 7, 1, 1, 1, 2, 1, `...`]

(9)

cfrac(evalf(sum(f(x), x = 1 .. 100)), 'quotients')

[0, 3, 1, 1, 1, 11, 2, 2, 1, 1, 4, `...`]

(10)

cfrac(evalf(sum(f(x), x = 1 .. 200)), 'quotients')

[0, 3, 1, 2, 1, 1, 1, 11, 3, 4, 6, `...`]

(11)

cfrac(evalf(sum(f(x), x = 1 .. 400)), 'quotients')

[0, 3, 1, 3, 3, 3, 1, 18, 1, 2, 1, `...`]

(12)

cfrac(evalf(sum(f(x), x = 1 .. 800)), 'quotients')

[0, 3, 1, 3, 1, 4, 16, 14, 3, 23, 2, `...`]

(13)

cfrac(evalf(sum(f(x), x = 1 .. 1600)), 'quotients')

[0, 3, 1, 4, 7, 4, 436, 1, 1, 1, 2, `...`]

(14)

``

Here are the quotients of the  continued fration  of the sum. 

cfrac(evalf(sum(f(x), x = 1 .. infinity)), 'quotients')

[0, 3, 1, 4, 1, 1, 1, 1, 1, 9, 1, `...`]

(15)

With the exception of the leading 0, that is close to the integer squence of pi.

``evalf((65241/65251)*Pi)

3.141111191

(16)

The exponents of 2 that sum the numerator and denominator, in the following way, of that multiple of pi give rise to the integer sequences {0,1,2,3,8,16},numbers such that floor[a(n)^2 / 7] is a square, and {0,2,3,4,8,16},{0,3} union powers of 2.

evalf((2^16-2^8-2^5-2^2-2-2^0)*Pi/(2^16-2^8-2^4-2^3-2^2-2^0))

3.141111191

(17)

We can do the same thing for the first 20 quotients giving rise to the integer sequences {0,1,2,5,6,8,10,13,17,19,22,23,24,28,31} and {0,4,6,9,12, 14,15,16,18,22, 23,24,28,31}. What can be said of these sequences?

cfrac(evalf(sum(f(x), x = 1 .. infinity), 20), 20, 'quotients')``

[0, 3, 1, 4, 1, 1, 1, 1, 1, 9, 1, 3, 1, 2, 1, 1, 1, 5, 1, 3, 11, `...`]

(18)

evalf((1849023129/1849306543)*Pi, 20)

3.1411111913121115131

(19)

````

evalf((2^31-2^28-2^24-2^23-2^22-2^19-2^17-2^13-2^10-2^8-2^6-2^5-2^2-2-2^0)*Pi/(2^31-2^28-2^24-2^23-2^22-2^18-2^16-2^15-2^14-2^12-2^9-2^6-2^4-2^0), 20)

3.1411111913121115131

(20)

``


 

2 3 4 5 6 7 8 Last Page 4 of 14