Marvin Ray Burns

 I've been using Maple since 1997 or so.

MaplePrimes Activity


These are replies submitted by Marvin Ray Burns

 I see how to draw the tesseract and penteract in 2 or 3 dimensions. The graph gets pretty crowded for the penteract. I don't see how I can use an individual edge of graphs of the hexeract and so on. I wonder if the default volume of an n-cube graph in Maple is n units. (That would be convenient.)

 

 

with(GraphTheory): with(SpecialGraphs): H4 := HypercubeGraph(4): H5 := HypercubeGraph(5):
DrawGraph([H4, H5], style = spring, dimension = 2)
DrawGraph([H4, H5], style = spring, dimension = 3)

Download May26b2012.mw

Digits := 23

Let c be the MRB constant

c := .187859642462067120248517934054273230055903094900139

Let C be Catalan's Constant.

C := .9159655941772190150546035149323841107741493742816721

evalf(-(119/19)*C-115+(479561360045/59753497176)*Pi+(525/76)*Pi^2+(102/19)*Pi*ln(2)+(353/76)*Pi*ln(3)-2*c) = -8.*10^(-21)

 

 

 Digits:=24

c := .187859642462067120248517934054273230055903094900139

evalf((2/7163)*(-90155*e-29388+37921*e^2)/(e*Pi)-c) = -5.19*10^(-22)

 evalf(((1325323718/907073065)*Pi-4)/Pi-c) = -2.6*10^(-22)

 

Digits:=22 

Again let c be the MRB constant and this time let b be the probability that at least two people in a room of 23 share birthday.

b:=.5072972343239854072254172283370325002359718452929878
c:= 0.187859642462067120248517934054273230055903094900139

 

(6200 b-239)/(2 (1550 b+437))-1 =0.187859642462067125421

 

(5 (1860 b+127))/(2 (1550 b+437))-2 =0.187859642462067125421

 

(5 (4960 b+1001))/(2 (1550 b+437))-7 = 0.187859642462067125421

 

0.187859642462067125421-c = 5.1725*10^(-18)

 

 

 Also 

evalf(23212425209 /3144920904*Pi-23 - c) = 2.*10^(-20)

 and

 evalf(20561436223 /2375900782*Pi-27 - c) = 3.*10^(-20)

 

Also

evalf((-216+53*Pi^(1/2)+363*Pi+1526*Pi^(3/2)+1062*Pi^2)/(92*Pi)-69-c) = -3.*10^(-20)

and

evalf(1/890*(115850*Zeta(3)+10010*Zeta(5)-1785*Pi^2-979*Pi^4)-41-c) = -5.*10^(-20)

 and

evalf((6/11)*Pi*arccosh(292945824/1726159)^2-58-c) = 6.*10^(-20)

marvinrayburns.com

Below we have approximations involving the MRB constant. The MRB constant plus a fraction is saved as P while a combination of another constant is saved as Q. We then subtract Q from P and always have a very small result.

Let

Let c be the MRB constant, 0.1878596424620671202485179340542732300559030949001387.

 

 

 P:= c+7/47

Let G be Graham's Biggest Little Hexagon area.

G:=0.6749814429301047036884958318514002889802977322780266

Q:=(79-940*G)/(3530*G-4032)

p-Q= -3.3803*10^(-18)

 

P := c+9/46

Let Q be the positive root of 41309050*x^3-2330137

Q:=0.3835118163751105434087

P-Q=5.51007*10^(-17)

 

P:=c+46/47

Let p be the plastic constant.

p:=1.3247179572447460259609088544780973407344040569017333 

Q:=-5*(37*p-2196)/(7000*p-71)

p-Q=6.97*10^(-19)

 

P:=c+35/48

e:=evalf(exp(1))

Q:= -17(e-5)*(5*e-6)/(-751+215*e+66*e^2)

P-Q= -1.710*10^(-19)

 

P:=c+40/49

Let r be the rabbit constant

r:=0.7098034428612913146417873994445755970125022057678605

Q:=6*(167*r+1060)/(25*r+7024)

P-Q= -1.20*10^(-19)

 

P:=c+29/51

Let Pg be plouffe's gamma constant.

Pg:=0.1475836176504332741754010762247405259511345238869178

Q:=-20*(303Pg-40)/(178Pg-151)

P-Q=-1.12336*10^(-17)

 

 

P:=c+15/17

Let F be the Fransén-Robinson Constant,

F:=2.8077702420285193652215011865577729323080859209301982

Q:=(20882-2007*F)/(1050 + 4700*F)

P-Q= -1.739*10^(-18)

 

 

 

P:=c+37/52

Let QRS be the QRS constant.

QRS:=0.6054436571967327494789228424472074752208994969563226

Q:=(3970*QRS+83)/(6053*QRS-900)

P-Q=1.7719*10^(-18)

 

 

P:=c+43/52

Let f1 be the first Foias constant.

f1:=2.2931662874118610315080282912508058643722572903271212

Q:=(3881-220*f1)/(100*f1+3098)

P-Q= -3.670*10^(-18)

 

 

P:=c+16/53

Let Pa be Plouffe's A constant 

Pa:=0.1591549430918953357688837633725143620344596457404564

Q:=4*(5800Pa-773)/(6000Pa+271)

P-Q=4.6241*10^(-18)

This post is continued in the MRB constant N Part 3.

 

Digits := 20:

c := evalf(sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity))

.18785964246206712025

(1)

Again let b be (1-2 MRB constant)^-1

b := 1/(1-2*c)

1.6018434909982361492

(2)

``

Then we have the divergent series``

````

evalf(sum((-1)^n*(-b*n^(1/n)-b), n = 1 .. infinity))

1.3009217454991180746

(3)

That is MRB constant times b plus 1

 

c*b+1

1.3009217454991180746

(4)

 

NULL

We also have the convergent series

evalf(sum((-1)^n*(b*n^(1/n)-b), n = 1 .. infinity))

.30092174549911807459

(5)

NULL

That is obviously MRB constant times b:``

c*b

.30092174549911807460

(6)

 

NULL

That means that we have the following equations.

 

 

evalf(sum((-1)^n*(-b*n^(1/n)-b), n = 1 .. infinity)-(sum((-1)^n*(b*n^(1/n)-b), n = 1 .. infinity)))

1.0000000000000000000

(7)

NULL

``

evalf(sum((-1)^n*(-b*n^(1/n)-b-b*n^(1/n)+b), n = 1 .. infinity))

1.0000000000000000000

(8)

``

evalf(sum((-1)^n*(-b*n^(1/n)-b*n^(1/n)), n = 1 .. infinity))

1.0000000000000000000

(9)

``

evalf(sum((-1)^n*(-2*b*n^(1/n)), n = 1 .. infinity))

1.0000000000000000000

(10)

evalf(-2*(sum((-1)^n*b*n^(1/n), n = 1 .. infinity)))

1.0000000000000000000

(11)

evalf(sum((-1)^n*b*n^(1/n), n = 1 .. infinity))

-.50000000000000000001

(12)

 

 

Finally, as we saw in the original post, we have the following.

evalf(sum(-(-1)^n*b*n^(1/n), n = 1 .. infinity))

.50000000000000000001

(13)

``

evalf(-b*(sum((-1)^n*n^(1/n), n = 1 .. infinity)))

.50000000000000000000

(14)

But sum((-1)^n*n^(1/n), n = 1 .. infinity)ia a divergent series whoes Cesàro summation is MRB constant -1/2

evalf(sum((-1)^n*n^(1/n), n = 1 .. infinity))-c+1/2

0.

(15)

So -b times (MRB constant -1/2) =1/2:``

-b*(c-1/2)

.50000000000000000000

(16)

Thus b times (1/2-MRB constant) =1/2:

b*(1/2-c)

.50000000000000000000

(17)

Therefore b*MRB constant=(b-1)*1/2:

b*c-(b-1)*(1/2)

0.

(18)

``

``

``

``

 

Download May122012d.mw

 

solve(sum((-1)^n*(a*n^(1/n)-a), n = 1 .. infinity) = x, a)

It only requires the distributive law in reverse to solve for a. But Maple adds to the work by applying the distrbutive law twice (once for a and once for (-1)^n) and the "associative law for convergent infinite series."

solve(sum((-1)^n*(a*n^(1/n)-a), n = 1 .. infinity) = x, a)

x/(sum((-1)^n*n^(1/n), n = 1 .. infinity)-(sum((-1)^n, n = 1 .. infinity)))

(1)

 

Is it just me, or do you see a convergent infinite series in that denominator?

In other words, is the series that is made from the sum of those two divergent series absolutely convergent? 

Download cincodemayo2012.mw

 

 

 

 

For a few x that I have tried, a is solved for in sum((-1)^n*(a*n^(1/n)-a), n = 1 .. infinity)=x  when a= x/MRB constant .

Maple confirms this by the following:

 



solve(sum((-1)^n*(a*n^(1/n)-a), n = 1 .. infinity) = x, a)

x/(sum((-1)^n*n^(1/n), n = 1 .. infinity)-(sum((-1)^n, n = 1 .. infinity)))

(1)

evalf(sum((-1)^n*n^(1/n), n = 1 .. infinity)-(sum((-1)^n, n = 1 .. infinity)))

.1878596425

(2)

evalf(solve(sum((-1)^n*(a*n^(1/n)-a), n = 1 .. infinity) = x, a))

5.323123086*x

(3)

``



Download april272012.mw

@icegood

I wonder if the Cesàro mean is faster than the partial sums to converge for all convergent series? I also wonder if it is true that  Levin's u-transform is better than all the Cesàro transforms for computing the MRB constant is it indeed better for summing all convergent series?

About  Levin's u-transform Mathematica (using Nsum[,"AlternatingSigns"]) sums the MRB constant a magnitude of times faster than Maple(using evalf(sum)); Mathematica might use a diffferent method.

See http://www.mapleprimes.com/posts/95240-Computing-Digits-Of-The-MRB-Constant

For this series the Cesàro mean seems to converge faster than the partial sums.

``

Let C be the MRB constant:

C := evalf(sum((-1)^n*(n^(1/n)-1), n = 1 .. infinity))

.1878596425

(1)

Subtract C from the partial sum of the first 10,000 terms:

evalf(sum((-1)^n*(n^(1/n)-1), n = 1 .. 10000)-C)

0.460663e-3

(2)

Define g:

g := proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = 1 .. x) end proc

proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = 1 .. x) end proc

(3)

Subtract C from the Cesàro mean of the first 10,000 terms and you get a number with a much smaller magnitude.

NULL

(1/10000)*evalf(sum(g(x), x = 1 .. 10000))-C

-0.76848e-5

(4)

NULL

 

``

 

Download mran.mw


Previously we had the function,

f := proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = x .. infinity) end proc

proc (x) options operator, arrow; sum((-1)^n*(n^(1/n)-1), n = x .. infinity) end proc

(1)

Consider just the sum of f(x) for x from 1 to infinity.NULL

``

NULL

evalf(sum(f(x), x = 1 .. infinity), 20)

.26163115389725031288

(2)

It is a less apealing multple of pi:

evalf((92951968/1116140855)*Pi, 18)

.261631153897250313

(3)

``


Download 4162012.mw

 

 

The MRB constant -1/2 = -.3121...  Here is what the real and imaginary parts of x^x^x^x look like as it goes to a maximum of maqnitude near x=-.335 in a plot and some parametric plots:

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x)))], x = -.4 .. -.3326)

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.40 .. -.39])

 

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.40 .. -.385])

 

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.39 .. -.38])

 

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.38 .. -.37])

 

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.37 .. -.36])

 

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.36 .. -.35])

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.36 .. -.335])

 

plot([Im(x^(x^(x^x))), Re(x^(x^(x^x))), x = -.35 .. -.3326])

 

``

 

Download 1212012b.mw

 

 

Here we see the local maximim magnitude is approximately3.24*10^24 at x= -.335:

plot(abs(x^(x^(x^x))), x = -.4 .. -.3325)

 

plot(abs(x^(x^(x^x))), x = -.34 .. -.3325)

 

plot(abs(x^(x^(x^x))), x = -.336 .. -.334)

 

``

 

Download 1212012c.mw

 

 

 

marvinrayburns.com

For some -.38 < x < -.18, (x^x^x^x) has a large magnitude. (It has real and imaginary parts far from 0 in either the positive or negative direction.) Then x^(x^x^x^x) is very close to 0. 

 

plot(Re(x^(x^(x^x))), x = -.50 .. -.38)

 

plot(Re(x^(x^(x^x))), x = -.50 .. -.10)

 

plot(Re(x^(x^(x^x))), x = -.20 .. -.10)

 

plot(Im(x^(x^(x^x))), x = -.50 .. -.38)

 

plot(Im(x^(x^(x^x))), x = -.50 .. -.10)

 

plot(Im(x^(x^(x^x))), x = -.20 .. -.10)

 

``

 

Download jan142012.mw

evalf(sum) uses Levin's u-transform to compute the value for the analytic extension of the sum.

I came accross it in the following discussion:

 

http://www.mapleprimes.com/posts/35778-MRB-Constant-F

3 4 5 6 7 8 9 Last Page 5 of 21