Muhammad Usman

235 Reputation

5 Badges

11 years, 355 days
Beijing, China

MaplePrimes Activity


These are questions asked by Muhammad Usman

Dear Users!

Hope you would be fine with everything. The following expression doesn't work for M=4,N=2,alpha=1. Please see the problem and try to fix. I shall be very thankful. 

 

simplify(sum(sum(((-1)^i2*GAMMA(N-i2+alpha)*2^(N-2*i2)/(GAMMA(alpha)*factorial(i2)*factorial(N-2*i2)*(N-2*i2+1))*(GAMMA(k+1)*(k+alpha)*GAMMA(alpha)^2/(Pi*2^(1-2*alpha)*GAMMA(k+2*alpha))))*(sum((1/2)*(-1)^i*GAMMA(k-i+alpha)*2^(k-2*i)*(1+(-1)^(N-2*i2+1+k-2*i))*GAMMA((1/2)*N-i2+1+(1/2)*k-i)*GAMMA(alpha+1/2)*L[k]/(GAMMA(alpha)*factorial(i)*factorial(k-2*i)*GAMMA(alpha+3/2+(1/2)*N-i2+(1/2)*k-i)), i = 0 .. floor((1/2)*k))), i2 = 0 .. floor((1/2)*N)), k = 0 .. M))

Dear users!

Hope everyone should be fine here. I need the following simiplification. I did it step by step is there and maple command to do this.

I am waiting your positive answer.

(diff(theta(eta), eta, eta))*(Rd*T[infinity]^3*(`θw`-1)^3*theta(eta)^3+3*Rd*T[infinity]^3*(`θw`-1)^2*theta(eta)^2+(3*(Rd*T[infinity]^3+(1/3)*epsilon*k[nf]))*(`θw`-1)*theta(eta)+Rd*T[infinity]^3+k[nf]) = (-3*Rd*T[infinity]^3*(`θw`-1)^3*theta(eta)^2-6*Rd*T[infinity]^3*(`θw`-1)^2*theta(eta)+(-3*Rd*T[infinity]^3-epsilon*k[nf])*(`θw`-1))*(diff(theta(eta), eta))^2+(-(rho*c[p])[nf]*nu[f]*f(eta)-(rho*c[p])[nf]*nu[f]*g(eta))*(diff(theta(eta), eta))+a*nu[f]*mu[nf]*(diff(f(eta), eta))^2/((-`θw`+1)*T[infinity])-2*a*nu[f]*mu[nf]*(diff(g(eta), eta))*(diff(f(eta), eta))/((`θw`-1)*T[infinity])+a*nu[f]*mu[nf]*(diff(g(eta), eta))^2/((-`θw`+1)*T[infinity])

 

(diff(theta(eta), eta, eta))*Rd*T[infinity]^3*(theta(eta)*`θw`-theta(eta)+1)^3+(diff(theta(eta), eta, eta))*k[nf]*(epsilon*theta(eta)*`θw`-epsilon*theta(eta)+1)+3*Rd*T[infinity]^3*(`θw`-1)*(theta(eta)*`θw`-theta(eta)+1)^2*(diff(theta(eta), eta))^2+epsilon*k[nf]*(`θw`-1)*(diff(theta(eta), eta))^2

 

diff((theta(eta)*`θw`-theta(eta)+1)^3*(diff(theta(eta), eta))*Rd*T[infinity]^3, eta)+diff((epsilon*theta(eta)*`θw`-epsilon*theta(eta)+1)*(diff(theta(eta), eta))*k[nf], eta);

Hi Users!

Hope everyone in fine and enjoying good health. I am facing problem to differential the following expression with respect to first variable (mentioned as red). Please help me to fix this query

f(z*sqrt(a/nu[f]), U*t/(2*x))

Thanks in advance

Dear Users!

Hope you would be fine with everying. I want to solve the following 2nd order linear differential equation. 

(1+B)*(diff(theta(eta), eta, eta))+C*A*(diff(theta(eta), eta)) = 0;
where A is given as

A := -(alpha*exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))*omega+alpha*exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))+exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))*omega-alpha*omega+exp(-sqrt((omega+1)*omega*(M^2+alpha+1))*eta/(omega+1))-alpha-omega-1)/sqrt((omega+1)*omega*(M^2+alpha+1));
I want solution for any values of omega, alpha, M, B, C and L. The BCs are below:

BCs := (D(theta))(0) = -1, theta(L) = 0.

I am waiting your response, 

Dear Users!

I want to simple the Gamma function occures in a matrix. I need the simpliest form of this matrix. If there is some thing common in all entries take it common. Thanks

 

Matrix(6, 6, {(1, 1) = 2*GAMMA(alpha+5/2)*Pi^(1/4)*sqrt(GAMMA(alpha+1)*GAMMA(alpha+1/2)^3)/(alpha*(2*alpha+3)*(1+2*alpha)*GAMMA(alpha)*GAMMA(alpha+1/2)^2), (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = (1/2)*GAMMA(alpha+5/2)*Pi^(1/4)*sqrt(GAMMA(alpha+1)*GAMMA(alpha+1/2)^3)/(alpha*(2*alpha+3)*(1+2*alpha)*GAMMA(alpha)*GAMMA(alpha+1/2)^2), (2, 2) = (1/4)*GAMMA(alpha+5/2)*sqrt(2)*sqrt(GAMMA(alpha+1/2)^3*alpha^3*(alpha+1)^3*GAMMA(alpha)^3)*Pi^(1/4)/((2*alpha+3)*(1+2*alpha)*GAMMA(alpha+1/2)^2*alpha^2*(alpha+1)^2*GAMMA(alpha)^2), (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (3, 1) = (1/16)*GAMMA(alpha+5/2)*Pi^(1/4)*sqrt(GAMMA(alpha+1)*GAMMA(alpha+1/2)^3)/(GAMMA(alpha+1/2)^2*alpha*(alpha+1)*(1+2*alpha)*GAMMA(alpha)), (3, 2) = (1/8)*GAMMA(alpha+5/2)*sqrt(2)*sqrt(GAMMA(alpha+1/2)^3*alpha^3*(alpha+1)^3*GAMMA(alpha)^3)*Pi^(1/4)/((2*alpha+3)*(1+2*alpha)*GAMMA(alpha+1/2)^2*alpha^2*(alpha+1)^2*GAMMA(alpha)^2), (3, 3) = (1/32)*GAMMA(alpha+5/2)*sqrt(2)*sqrt(alpha^3*GAMMA(alpha+3/2)^3*(2+alpha)^3*GAMMA(alpha)^3)*Pi^(1/4)/((alpha+1)*(2*alpha+3)*alpha^2*GAMMA(alpha+3/2)^2*(2+alpha)^2*GAMMA(alpha)^2), (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 2*GAMMA(alpha+5/2)*Pi^(1/4)*sqrt(GAMMA(alpha+1)*GAMMA(alpha+1/2)^3)/(alpha*(2*alpha+3)*(1+2*alpha)*GAMMA(alpha)*GAMMA(alpha+1/2)^2), (4, 5) = 0, (4, 6) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = (3/2)*GAMMA(alpha+5/2)*Pi^(1/4)*sqrt(GAMMA(alpha+1)*GAMMA(alpha+1/2)^3)/(alpha*(2*alpha+3)*(1+2*alpha)*GAMMA(alpha)*GAMMA(alpha+1/2)^2), (5, 5) = (1/4)*GAMMA(alpha+5/2)*sqrt(2)*sqrt(GAMMA(alpha+1/2)^3*alpha^3*(alpha+1)^3*GAMMA(alpha)^3)*Pi^(1/4)/((2*alpha+3)*(1+2*alpha)*GAMMA(alpha+1/2)^2*alpha^2*(alpha+1)^2*GAMMA(alpha)^2), (5, 6) = 0, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = (1/16)*(18*alpha+19)*GAMMA(alpha+5/2)*Pi^(1/4)*sqrt(GAMMA(alpha+1)*GAMMA(alpha+1/2)^3)/(alpha*(alpha+1)*(2*alpha+3)*(1+2*alpha)*GAMMA(alpha)*GAMMA(alpha+1/2)^2), (6, 5) = (3/8)*GAMMA(alpha+5/2)*sqrt(2)*sqrt(GAMMA(alpha+1/2)^3*alpha^3*(alpha+1)^3*GAMMA(alpha)^3)*Pi^(1/4)/((2*alpha+3)*(1+2*alpha)*GAMMA(alpha+1/2)^2*alpha^2*(alpha+1)^2*GAMMA(alpha)^2), (6, 6) = (1/32)*GAMMA(alpha+5/2)*sqrt(2)*sqrt(alpha^3*GAMMA(alpha+3/2)^3*(2+alpha)^3*GAMMA(alpha)^3)*Pi^(1/4)/((alpha+1)*(2*alpha+3)*alpha^2*GAMMA(alpha+3/2)^2*(2+alpha)^2*GAMMA(alpha)^2)})

First 12 13 14 15 16 17 18 Last Page 14 of 37