Muhammad Usman

235 Reputation

5 Badges

11 years, 356 days
Beijing, China

MaplePrimes Activity


These are questions asked by Muhammad Usman

Dear hope you will be fine I want to represent the data in term of solid line not dotted, asterik etc of the following code. Please help me to fix this problem

 

restart; epsilon := 0; Pr := 1; beta := .1; Sc := 1; S := 0; L := 15;
                               15
for i from -L while i <= L do a[i] := 1.0*i/L end do;
for i2 from -L while i2 <= L do fw := a[i2]; Eq1[i2] := eval(diff(F(eta), eta, eta, eta)+F(eta)*(diff(F(eta), eta, eta))-(diff(F(eta), eta))^2+S*(epsilon-(diff(F(eta), eta)))+epsilon^2); Eq2[i2] := eval((diff(G(eta), eta, eta))/Pr-G(eta)*(diff(F(eta), eta))+F(eta)*(diff(G(eta), eta))); Eq3[i2] := eval(diff(H(eta), eta, eta)+Sc*(F(eta)*(diff(H(eta), eta))-beta*H(eta))); IC[i2] := F(0) = a[i2], (D(F))(0) = 1, (D(F))(L) = epsilon, G(0) = 1, G(L) = 0, H(0) = 1, H(L) = 0; dsys1[i2] := {Eq1[i2], Eq2[i2], Eq3[i2], IC[i2]}; dsol1[i2] := dsolve(dsys1[i2], numeric, output = listprocedure, range = 0 .. L); dsol1x[i2] := subs(dsol1[i2], diff(F(eta), eta, eta)); dsol1y[i2] := subs(dsol1[i2], G(eta)); dsol1z[i2] := subs(dsol1[i2], H(eta)) end do;
for j from -L while j <= L do g[j] := eval(-dsol1x[j](0)) end do;
with(plots);

g1 := pointplot({seq([n/L, g[n]], n = -L .. L)}, symbol = asterisk, symbolsize = 15, color = blue);
display(g1);
 

Dear friends:

I am facing two problems

1. one is to get solution of the below system of ODE for L=100 (highlited as red) and

2. the other is I want the graph in the form of solid line not poit, asterisk etc.

 

restart; epsilon := .1; Pr := 1; beta := .1; Sc := 1; S := 1; L := 20;
for i from -L while i <= L do;
a[i] := 1.0*i/L;
end do;
for i2 from -L while i2 <= L do;

fw := a[i2]; 

Eq1[i2] := eval(diff(F(eta), eta, eta, eta)+F(eta)*(diff(F(eta), eta, eta))-(diff(F(eta), eta))^2+S*(epsilon-(diff(F(eta), eta)))+epsilon^2);
Eq2[i2] := eval((diff(G(eta), eta, eta))/Pr-G(eta)*(diff(F(eta), eta))+F(eta)*(diff(G(eta), eta))); 
Eq3[i2] := eval(diff(H(eta), eta, eta)+Sc*(F(eta)*(diff(H(eta), eta))-beta*H(eta)));
IC[i2] := F(0) = a[i2], (D(F))(0) = 1, (D(F))(L) = epsilon, G(0) = 1, G(L) = 0, H(0) = 1, H(L) = 0;
dsys1[i2] := {Eq1[i2], Eq2[i2], Eq3[i2], IC[i2]};
dsol1[i2] := dsolve(dsys1[i2], numeric, output = listprocedure, range = 0 .. L);
dsol1x[i2] := subs(dsol1[i2], diff(F(eta), eta, eta));
dsol1y[i2] := subs(dsol1[i2], G(eta));
dsol1z[i2] := subs(dsol1[i2], H(eta)) end do;

for j from -L while j <= L do; 
g[j] := eval(-dsol1x[j](0)) end do;
with(plots); 

g6 := pointplot({seq([n/L, g[n]], n = -L .. L)}, symbol = asterisk, symbolsize = 15, color = red);
display(g6);


Please see the problem and correct as soon as possible. I am waiting your positive respone.

Muhammad Usman

School of Mathematical Sciences 
Peking University, Beijing, China

 

Dear friends! I am facing problem to solve the below system of ODEs numerically please find the mistake and correct it.

alpha := -1; R := 2; m := 2; Pr := 7; Le := 1.25; Nt := .2; Nb := .2; g := .5; K1 := .1; Q := .5

Eq1 := eta^3*(diff(F(eta), eta, eta, eta, eta))+alpha*(eta^4*(diff(F(eta), eta, eta, eta))+eta^3*(diff(F(eta), eta, eta))-eta^2*F(eta))-2*eta^2*(diff(F(eta), eta, eta, eta))+3*eta*(diff(F(eta), eta, eta))-3*(diff(F(eta), eta))+eta*R*(diff(F(eta), eta))^2-3*eta*R*F(eta)*(diff(F(eta), eta, eta))+3*R*F(eta)*(diff(F(eta), eta))+3*eta^2*R*F(eta)*(diff(F(eta), eta, eta, eta))-eta^2*(diff(F(eta), eta))*(diff(F(eta), eta, eta))-M^2*(eta^3*(diff(F(eta), eta, eta))-eta^2*(diff(F(eta), eta))); Eq2 := eta*(diff(G(eta), eta, eta))+alpha*Pr*eta^2*(diff(G(eta), eta))+R*Pr*F(eta)*(diff(G(eta), eta))+Nb*eta*(diff(G(eta), eta))*(diff(H(eta), eta))+Nt*eta*(diff(G(eta), eta))^2+diff(G(eta), eta)+Q*Pr*eta*G(eta) = 0; Eq3 := eta*(diff(H(eta), eta, eta))+alpha*Le*Pr*eta^2*(diff(H(eta), eta))+R*Le*Pr*F(eta)*(diff(H(eta), eta))+Nt*eta*(diff(G(eta), eta, eta))/Nb+Nt*(diff(G(eta), eta))/Nb+diff(H(eta), eta)-g*Le*Pr*eta*H(eta)-Le*Pr*K1*eta = 0;

IC1 := F(0) = 0, F(1) = 1, (D(F))(0) = 0, (D(F))(1) = 0, (D(G))(0) = 0, G(1) = 1, (D(H))(0) = 0, H(1) = lambda; dsys1 := {Eq1, Eq2, Eq3, IC1}; dsol1 := dsolve(dsys1, numeric, continuation = lambda, range = 0 .. 1);

dsol1x := subs(dsol1, F(eta));

dsol1y := subs(dsol1, G(eta)); dsol1z := subs(dsol1, H(eta));
 

With my best regards and sincerely.

Muhammad Usman

School of Mathematical Sciences 
Peking University, Beijing, China

Hello! Hope everyone would be fine. I want to solve the following system of ODEs please help to find the numerical solution

N := .6; alpha := .4; beta := .1; Nt := .2; Pr := .5; Nb := .1; s := .2; lambda[1] := 1; delta := .5; gm := 1; Sc := 1:L:=1:

Eq1 := (alpha*s+1)*(diff(F(eta), eta, eta, eta))-(F(eta)+(1/2)*s*eta)*(diff(F(eta), eta, eta))+((1/2)*(diff(F(eta), eta))-s)*(diff(F(eta), eta))-2*(G(eta)^2-(1-gm)^2)-2*lambda[1]*(H(eta)+N*Y(eta))-(alpha+beta-(1/4)*delta*(diff(F(eta), eta, eta, eta)))*(diff(F(eta), eta, eta))^2-(alpha-2*beta)*(diff(F(eta), eta))*(diff(F(eta), eta, eta, eta))-(2*(alpha-beta-(1/4)*delta*(diff(F(eta), eta, eta, eta))))*(diff(G(eta), eta))^2-(2*(alpha-(1/4)*delta*(diff(F(eta), eta, eta))))*G(eta)*(diff(G(eta), eta, eta)) = 0; Eq2 := (alpha*s+1)*(diff(G(eta), eta, eta))-F(eta)*(diff(G(eta), eta))+G(eta)*(diff(F(eta), eta))+s*(1-gm-G(eta)-(1/2)*eta*(diff(G(eta), eta)))-(1/2)*alpha*s*eta*(diff(G(eta), eta, eta, eta))+((3/2)*alpha+beta)*G(eta)*(diff(F(eta), eta, eta, eta))-((1/2)*alpha+beta)*(diff(F(eta), eta))*(diff(G(eta), eta, eta))-delta*((diff(F(eta), eta, eta))^2+6*(diff(G(eta), eta))^2)*(diff(G(eta), eta, eta)) = 0; Eq3 := (diff(H(eta), eta, eta))/Pr-F(eta)*(diff(H(eta), eta))+(1/2)*H(eta)*(diff(F(eta), eta))-s*(2*H(eta)+(1/2)*eta*(diff(H(eta), eta)))+Nb*(diff(H(eta), eta))*(diff(Y(eta), eta))+Nt*(diff(H(eta), eta))^2 = 0; Eq4 := (diff(Y(eta), eta, eta))/Sc-F(eta)*(diff(Y(eta), eta))+(1/2)*Y(eta)*(diff(F(eta), eta))-s*(2*Y(eta)+(1/2)*eta*(diff(Y(eta), eta)))+Nt*(diff(H(eta), eta, eta))/Nb = 0;

IC1 := F(0) = 0, (D(F))(0) = 0, G(0) = gm, H(0) = 1, Y(0) = 1; IC2 := (D(F))(L) = 0, G(L) = 1-gm, (D(G))(L) = 0, H(L) = 0, Y(L) = 0; dsys1 := {Eq1, Eq2, Eq3, Eq4, IC1, IC2}; dsol1 := dsolve(dsys1, numeric, output = listprocedure, range = 0 .. L);

dsol1f := subs(dsol1, F(eta));

dsol1g := subs(dsol1, G(eta)); dsol1h := subs(dsol1, H(eta)); dsol1y := subs(dsol1, Y(eta));

With my best regards and sincerely.

Dear all

I am facing to run the following expression for an arbitrary values of M, k and alpha.

u := simplify(sum(sum(c[p, q]*2^((K-1)*(1/2))*(sum(sum(sum(sum(2^((K-1)*(p-i-j+q-k-l))*GAMMA(p-i-j+1)*x^(p-i-j-alpha)*(1-p)^j*(1-q)^l*g[i]*binomial(p-i, j)*binomial(p, i)*binomial(p-k, l)*binomial(q, k)/GAMMA(p-i-alpha-j+1), l = 0 .. q-k), k = 0 .. q), j = 0 .. p-i-ceil(alpha)), i = ceil(alpha) .. p))/sqrt(2*(-1)^q*factorial(q)^2*g[2*q]/factorial(2*q)), q = 1 .. Delta), p = ceil(alpha) .. Delta));
FD := simplify(convert(%, StandardFunctions)); expand(radnormal(convert(FD, elementary)))

Please correct it and run it for M=10, k=1, alpha=0.5.

First 21 22 23 24 25 26 27 Last Page 23 of 37