Prakash J

100 Reputation

3 Badges

4 years, 156 days

MaplePrimes Activity


These are questions asked by Prakash J

I have some ODE system contains unknown variables with  boundary conditions  (see the attachment). How to solve these system and find the vales of unknown variables.

In this problem, the boundary conditions tends to 0, when x tends to infinity.  BVP_with_parameters.mw
 

restart

eq1 := f(x) = x+a[1]*x^2-(1/48)*sqrt(2)*a[1]*x^4-(1/120)*a[1]^2*sqrt(2)*x^5;

h(x) = -0.3535533905e-3*x^5*a[2]*a[1]*a[3]-0.3333333334e-9*x^5*a[3]*a[2]^4+0.4166666668e-7*x^4*a[2]*a[3]^3-0.3333333334e-9*x^5*a[2]^2*a[3]^3-0.5000000000e-9*x^5*a[3]^2*a[2]^3+0.1250000000e-6*x^4*a[3]*a[2]^3-0.8333333336e-10*x^5*a[2]*a[3]^4+0.1250000000e-6*x^4*a[3]^2*a[2]^2-0.8333333336e-10*x^5*a[2]^5+0.4166666668e-7*x^4*a[2]^4+a[3]*x-0.1473139128e-1*x^4*a[1]*a[3]+0.2946278254e-1*x^4*a[1]*a[2]-0.3240906080e-3*x^5*a[1]*a[2]^2+0.2798964342e-5*x^5*a[2]*a[3]^2+0.4714045206e-5*x^5*a[3]*a[2]^2-0.6629126071e-3*x^4*a[3]*a[2]+0.7812499998e-3*x^5*a[3]-0.2946278254e-1*x^3*a[3]-0.5892556508e-3*x^4*a[2]^2+0.1915080866e-5*x^5*a[2]^3+0.5892556509e-1*x^3*a[2]-0.4687500000e-2*x^5*a[2]+0.5000000000e-2*a[2]^2*x^2-0.1666666667e-4*x^3*a[2]^3+0.5000000000e-2*a[2]*x^2*a[3]-0.3333333334e-4*x^3*a[3]*a[2]^2-0.1666666667e-4*x^3*a[2]*a[3]^2+1.

(1)

bcs := f(0) = 0, (D(f))(0) = 1, f(10) = 0, g(0) = 1, g(10) = 0, h(0) = 1, h(10) = 0;

f(0) = 0, (D(f))(0) = 1, f(10) = 0, g(0) = 1, g(10) = 0, h(0) = 1, h(10) = 0

(2)

sol := dsolve([{f(x), g(x), h(x)}, bcs], numeric)

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

``

 

eq1:=( d)/(dt)u+(d^(2))/(dy^(2))u + s*( d)/(dy)u + delta * theta = 0;

eq2:=( d)/(dt)theta + (d^(2))/(dy^(2))theta + s*Pr*( d)/(dy)theta +lambda* exp(theta/(1 +(epsilon*theta))) = 0; 

initial and boundary conditons   

t <=0; u = theta = 0, for 0 <= y  <= 1   

t> 0;  u =0, theta = 0   at  y = 0;  

t> 0;  u =1, theta = 0   at   y = 1  ;

where, s, epsilon, Pr, lambda, delta are arbitrary parameters

eq1 := diff(f(x), x, x, x)+(1/2)*cos(alpha)*x*(diff(f(x), x, x))+(1/2)*sin(alpha)*f(x)*(diff(f(x), x, x)) = 0;

eq2 := diff(g(x), x, x)+diff(g(x), x)+(diff(g(x), x))*(diff(h(x), x))+cos(alpha)*x*(diff(g(x), x))+sin(alpha)*f(x)*g(x) = 0;

eq3 := diff(g(x), x, x)+diff(h(x), x, x)+1/2*(cos(alpha)*x+sin(alpha)*f(x)) = 0

ics := f(0) = 0, (D(f))(0) = 1, ((D@@2)(f))(0) = a[1], g(0) = 1, (D(g))(0) = a[2], h(0) = 1, (D(h))(0) = a[3];

 

where p, q, r, a are positive constants and phi(0) be a initial condition

eq1 := diff(x(t), t) = x(K[1]-x(t))-p*x(t-tau[1])*y(t); eq2 := diff(y(t), t) = y(K[2]-x(t))-q*y(t-tau[2])*x(t);
(x*, y*):= (p*K[2]-k[1])/(p*q-1), (q*K[1]-k[2])/(p*q-1);

where, k_1, k_2, p, q, tau_1, tau_2 are positive constants

1 2 3 4 5 6 Page 3 of 6