Robert Israel

6522 Reputation

21 Badges

18 years, 186 days
University of British Columbia
Associate Professor Emeritus
North York, Ontario, Canada

MaplePrimes Activity


These are replies submitted by Robert Israel

If I1, I2, I3 and I4 are "knowns", you shouldn't assign values to them as you did.  I think you want something like this.  I'll call the values i1, i2, i3, i4.

> solve({I1=i1,I2=i2,I3=i3,I4=i4},{M,a,b,theta},AllSolutions);

Unfortunately this doesn't produce a result, so I'll try Groebner basis methods.

> with(Groebner);
G:= map(numer,subs(cos(theta)=c,sin(theta)=s,convert([I1-i1,I2-i2,I3-i3,I4-i4,s^2+c^2-1],trig)));
B:= Basis(G,plex(a,b,c,s,M,i1,i2,i3,i4));
B[1];

i4*i3^2*i2^2-i3^2*i2^2*i1-i2^2*i1*M^2+i2*i1^2*M^2-i4^2*i3*i1^2+i4^2*i2*i1^2+i4*i3^2*M^2+i3*i2^2*M^2*I+i4^2*i1*M^2*I+i4^2*i3^2*i1*I-I*i4*i2^2*i1^2-I*i4*i1^2*M^2-I*i4^2*i3^2*i2-I*i3^2*i2*M^2+i3*i2^2*i1^2*I-i4^2*i3*M^2+(1-I)*i4*i3^2*i2*i1+(-1+I)*i4*i3*i2^2*i1+(1-I)*i4*i3*i2*i1^2+(-2+2*I)*i4*i3^2*i2*M-(1+I)*i4*i3*i2^2*M-(1+I)*i4*i3^2*i1*M+(1+I)*i3^2*i2*i1*M+(1+I)*i4*i2^2*i1*M+(2-2*I)*i3*i2^2*i1*M+(1+I)*i4*i3*i1^2*M+(-2+2*I)*i4*i2*i1^2*M-(1+I)*i3*i2*i1^2*M+(1-I)*i4*i3*i2*M^2+(-1+I)*i4*i3*i1*M^2+(1-I)*i4*i2*i1*M^2+(-1+I)*i3*i2*i1*M^2+(-1+I)*i4^2*i3*i2*i1+(1+I)*i4^2*i3*i2*M+(2-2*I)*i4^2*i3*i1*M-(1+I)*i4^2*i2*i1*M

This isquadratic in M, and has two solutions in term of i1,i2,i3,i4 (which I won't show here because they're rather complicated).

> solve(%,M);

I'm sorry, but it doesn't make sense.  The solution of a differential equation depends on all the values of the functions on an interval, not only on the values at 4 points.

I'm sorry, but it doesn't make sense.  The solution of a differential equation depends on all the values of the functions on an interval, not only on the values at 4 points.

The equations can be obtained (in Firefox: I'm sure Internet Explorer is similar but maybe with slighly different names) by right-clicking on the images, choosing "Properties" and looking at "Alternate Text".

> Eq1:=55200.0*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^.5*(2.048000000*10^15*a+7.680000000*10^12*b+2.560000000*10^10*c+6.40000000*10^7*d)/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c))-1.177600000*10^12*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2*(4.800000*10^5*a+1200*b+2*c))-1.766400000*10^10*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c)^2) = 0;
  Eq2:= 55200.0*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^.5*(7.680000000*10^12*a+2.880000000*10^10*b+9.60000000*10^7*c+2.400000*10^5*d)/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c))-4.416000000*10^9*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2*(4.800000*10^5*a+1200*b+2*c))-44160000*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c)^2) = 0;
  Eq3:=  55200.0*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^.5*(2.560000000*10^10*a+9.600000000*10^7*b+320000*c+800*d)/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)*(4.800000000*10^5*a+1200*b+2*c))-14720000*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^1.5/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2*(4.800000000*10^5*a+1200*b+2*c))-73600*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000000*10^5*b+400*c+d)*(4.800000000*10^5*a+1200*b+2*c)^2)+18400*(1+d^2)^1.5/(c^2*d) = 0;
  Eq4:= 55200.0*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^.5*(6.400000000*10^7*a+2.400000000*10^5*b+800*c+2*d)/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)*(4.800000000*10^5*a+1200*b+2*c))-36800*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^1.5/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2*(4.800000000*10^5*a+1200*b+2*c))-55200.0*(1+d^2)^.5/c+18400*(1+d^2)^1.5/(c*d^2) = 0;
  sys:= convert({Eq1, Eq2, Eq3, Eq4}, rational); 
  S:= [solve(sys)];

This returns three solutions: two of them have a and b arbitrary, one has c arbitrary.  All involve complex numbers.  There are no real solutions.

The equations can be obtained (in Firefox: I'm sure Internet Explorer is similar but maybe with slighly different names) by right-clicking on the images, choosing "Properties" and looking at "Alternate Text".

> Eq1:=55200.0*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^.5*(2.048000000*10^15*a+7.680000000*10^12*b+2.560000000*10^10*c+6.40000000*10^7*d)/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c))-1.177600000*10^12*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2*(4.800000*10^5*a+1200*b+2*c))-1.766400000*10^10*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c)^2) = 0;
  Eq2:= 55200.0*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^.5*(7.680000000*10^12*a+2.880000000*10^10*b+9.60000000*10^7*c+2.400000*10^5*d)/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c))-4.416000000*10^9*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2*(4.800000*10^5*a+1200*b+2*c))-44160000*(1+(3.20000000*10^7*a+1.200000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000*10^5*b+400*c+d)*(4.800000*10^5*a+1200*b+2*c)^2) = 0;
  Eq3:=  55200.0*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^.5*(2.560000000*10^10*a+9.600000000*10^7*b+320000*c+800*d)/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)*(4.800000000*10^5*a+1200*b+2*c))-14720000*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^1.5/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2*(4.800000000*10^5*a+1200*b+2*c))-73600*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^1.5/((3.20000000*10^7*a+1.200000000*10^5*b+400*c+d)*(4.800000000*10^5*a+1200*b+2*c)^2)+18400*(1+d^2)^1.5/(c^2*d) = 0;
  Eq4:= 55200.0*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^.5*(6.400000000*10^7*a+2.400000000*10^5*b+800*c+2*d)/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)*(4.800000000*10^5*a+1200*b+2*c))-36800*(1+(3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2)^1.5/((3.200000000*10^7*a+1.200000000*10^5*b+400*c+d)^2*(4.800000000*10^5*a+1200*b+2*c))-55200.0*(1+d^2)^.5/c+18400*(1+d^2)^1.5/(c*d^2) = 0;
  sys:= convert({Eq1, Eq2, Eq3, Eq4}, rational); 
  S:= [solve(sys)];

This returns three solutions: two of them have a and b arbitrary, one has c arbitrary.  All involve complex numbers.  There are no real solutions.

There are many ways to handle delay differential equations.    You might look at www.mapleprimes.com/forum/delaylogistic or groups.google.ca/group/sci.math.symbolic/browse_frm/thread/1f04240aa7b3a42c/fcbe7928da2ad9d1

There are many ways to handle delay differential equations.    You might look at www.mapleprimes.com/forum/delaylogistic or groups.google.ca/group/sci.math.symbolic/browse_frm/thread/1f04240aa7b3a42c/fcbe7928da2ad9d1

Another way is using a Groebner basis. 

> with(Groebner):
   G:= convert([seq(lhs(EQ||i),i=1..12)],rational);
   B:= Basis(G, plex(A1, A2, A3, B1, B2, B3, C2, D2, D3, P, a3, alfa));

In the (rather lengthy) result, the first element is a cubic polynomial in alfa which has roots
29516.12162, -3.424535+116.6084978*I, -3.424535-116.6084978*I.  So I'm quite confident that solve is not omitting any solutions.
 

Another way is using a Groebner basis. 

> with(Groebner):
   G:= convert([seq(lhs(EQ||i),i=1..12)],rational);
   B:= Basis(G, plex(A1, A2, A3, B1, B2, B3, C2, D2, D3, P, a3, alfa));

In the (rather lengthy) result, the first element is a cubic polynomial in alfa which has roots
29516.12162, -3.424535+116.6084978*I, -3.424535-116.6084978*I.  So I'm quite confident that solve is not omitting any solutions.
 

> map2({`=`}, m, %);
> map2({`=`}, m, %);

When using algebraic commands such as solve, it's sometimes better to use exact rationals rather than floats.

> sysr:= convert(sys,rational);
  solve(sysr);
  V:= [allvalues(%)];
  evalf[20](V);

[{A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = .18998177911873809335e-3, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = -.14623998857559515179, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = 29516.121625530464137, P = 304.45797935695207268, a3 = 1522.4817244768608202, alfa = 29516.121625530464137}, {A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = -.95966523985645933810e-4+.22776888089692050129e-4*I, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = .1855552024200438738e-2+.23441729108477519857e-1*I, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = -3.42453468052661868+116.60850395991041032*I, P = -153.79250638725309906+36.501423220660336746*I, a3 = -10.75314511305216855+122.12808630347007648*I, alfa = -3.42453468052661868+116.60850395991041032*I}, {A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = -.95966523985645933810e-4-.22776888089692050129e-4*I, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = .1855552024200438738e-2-.23441729108477519857e-1*I, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = -3.42453468052661868-116.60850395991041032*I, P = -153.79250638725309906-36.501423220660336746*I, a3 = -10.75314511305216855-122.12808630347007648*I, alfa = -3.42453468052661868-116.60850395991041032*I}]

There are three solutions, but only one of them is real.

> remove(has,%,I);

[{A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = .18998177911873809335e-3, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = -.14623998857559515179, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = 29516.121625530464137, P = 304.45797935695207268, a3 = 1522.4817244768608202, alfa = 29516.121625530464137}]

This is the only real solution.

When using algebraic commands such as solve, it's sometimes better to use exact rationals rather than floats.

> sysr:= convert(sys,rational);
  solve(sysr);
  V:= [allvalues(%)];
  evalf[20](V);

[{A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = .18998177911873809335e-3, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = -.14623998857559515179, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = 29516.121625530464137, P = 304.45797935695207268, a3 = 1522.4817244768608202, alfa = 29516.121625530464137}, {A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = -.95966523985645933810e-4+.22776888089692050129e-4*I, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = .1855552024200438738e-2+.23441729108477519857e-1*I, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = -3.42453468052661868+116.60850395991041032*I, P = -153.79250638725309906+36.501423220660336746*I, a3 = -10.75314511305216855+122.12808630347007648*I, alfa = -3.42453468052661868+116.60850395991041032*I}, {A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = -.95966523985645933810e-4-.22776888089692050129e-4*I, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = .1855552024200438738e-2-.23441729108477519857e-1*I, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = -3.42453468052661868-116.60850395991041032*I, P = -153.79250638725309906-36.501423220660336746*I, a3 = -10.75314511305216855-122.12808630347007648*I, alfa = -3.42453468052661868-116.60850395991041032*I}]

There are three solutions, but only one of them is real.

> remove(has,%,I);

[{A1 = -163.33387743488749552, A2 = -165.10415276719380192, A3 = .18998177911873809335e-3, B1 = 1.5300000000000000000, B2 = 17.718654803163617943, B3 = -.14623998857559515179, C2 = -8.5552387203254616659, D2 = 7.4813451968363820566, D3 = 29516.121625530464137, P = 304.45797935695207268, a3 = 1522.4817244768608202, alfa = 29516.121625530464137}]

This is the only real solution.

The requirement that f_C(t) >= 0 means that f_all(t) >= p*f_B(t) for all t, i.e. that p is bounded by the infimum of f_all(t)/f_B(t).  If, as in your case, f_all and f_B are normal with the same variance sigma^2 but different means mu_all and mu_B, that infimum is actually 0, because f_all(t)/f_B(t) = exp(((t - mu_B)^2 - (t - mu_all)^2)/(2*sigma^2))
= const * exp(t*(mu_all - mu_B)/sigma^2) -> 0 as t -> +infinity or -infinity, depending on the sign of mu_all - mu_B. 

 

 

The requirement that f_C(t) >= 0 means that f_all(t) >= p*f_B(t) for all t, i.e. that p is bounded by the infimum of f_all(t)/f_B(t).  If, as in your case, f_all and f_B are normal with the same variance sigma^2 but different means mu_all and mu_B, that infimum is actually 0, because f_all(t)/f_B(t) = exp(((t - mu_B)^2 - (t - mu_all)^2)/(2*sigma^2))
= const * exp(t*(mu_all - mu_B)/sigma^2) -> 0 as t -> +infinity or -infinity, depending on the sign of mu_all - mu_B. 

 

 

First 43 44 45 46 47 48 49 Last Page 45 of 187