Ronan

1022 Reputation

14 Badges

13 years, 160 days
East Grinstead, United Kingdom

MaplePrimes Activity


These are replies submitted by Ronan

@Torre Thank You. Have Experimented with your Suggestion. Closeset I got was with Q diagonal matrix [1,1,0]. Produdes correct number of zeroes but row and columns e4 and e5 would need to be reversed. Looks like I need a 4x4 matrix as shown at end. Could not make a table with the "Structure Equations. Would appreciate any further suggestions.


restart

with(DifferentialGeometry):

ADA := AlgebraLibraryData("Clifford(3)", alg);

_DG([["Algebra", alg, [8, table( [ ] )]], [[[1, 1, 1], 1], [[1, 2, 2], 1], [[1, 3, 3], 1], [[1, 4, 4], 1], [[1, 5, 5], 1], [[1, 6, 6], 1], [[1, 7, 7], 1], [[1, 8, 8], 1], [[2, 1, 2], 1], [[2, 2, 1], -1], [[2, 3, 5], 1], [[2, 4, 6], 1], [[2, 5, 3], -1], [[2, 6, 4], -1], [[2, 7, 8], 1], [[2, 8, 7], -1], [[3, 1, 3], 1], [[3, 2, 5], -1], [[3, 3, 1], -1], [[3, 4, 7], 1], [[3, 5, 2], 1], [[3, 6, 8], -1], [[3, 7, 4], -1], [[3, 8, 6], 1], [[4, 1, 4], 1], [[4, 2, 6], -1], [[4, 3, 7], -1], [[4, 4, 1], -1], [[4, 5, 8], 1], [[4, 6, 2], 1], [[4, 7, 3], 1], [[4, 8, 5], -1], [[5, 1, 5], 1], [[5, 2, 3], 1], [[5, 3, 2], -1], [[5, 4, 8], 1], [[5, 5, 1], -1], [[5, 6, 7], 1], [[5, 7, 6], -1], [[5, 8, 4], -1], [[6, 1, 6], 1], [[6, 2, 4], 1], [[6, 3, 8], -1], [[6, 4, 2], -1], [[6, 5, 7], -1], [[6, 6, 1], -1], [[6, 7, 5], 1], [[6, 8, 3], 1], [[7, 1, 7], 1], [[7, 2, 8], 1], [[7, 3, 4], 1], [[7, 4, 3], -1], [[7, 5, 6], 1], [[7, 6, 5], -1], [[7, 7, 1], -1], [[7, 8, 2], -1], [[8, 1, 8], 1], [[8, 2, 7], -1], [[8, 3, 6], 1], [[8, 4, 5], -1], [[8, 5, 4], -1], [[8, 6, 3], 1], [[8, 7, 2], -1], [[8, 8, 1], 1]]])

(1)

DGsetup(ADA)

`algebra name: alg`

(2)

MultiplicationTable(alg, "AlgebraTable")

"[[[,`| `,_DG([["vector",alg,[]],[[[1],1]]]),_DG([["vector",alg,[]],[[[2],1]]]),_DG([["vector",alg,[]],[[[3],1]]]),_DG([["vector",alg,[]],[[[4],1]]]),_DG([["vector",alg,[]],[[[5],1]]]),_DG([["vector",alg,[]],[[[6],1]]]),_DG([["vector",alg,[]],[[[7],1]]]),_DG([["vector",alg,[]],[[[8],1]]])],[,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `],[_DG([["vector",alg,[]],[[[1],1]]]),`| `,_DG([["vector",alg,[]],[[[1],1]]]),_DG([["vector",alg,[]],[[[2],1]]]),_DG([["vector",alg,[]],[[[3],1]]]),_DG([["vector",alg,[]],[[[4],1]]]),_DG([["vector",alg,[]],[[[5],1]]]),_DG([["vector",alg,[]],[[[6],1]]]),_DG([["vector",alg,[]],[[[7],1]]]),_DG([["vector",alg,[]],[[[8],1]]])],[_DG([["vector",alg,[]],[[[2],1]]]),`| `,_DG([["vector",alg,[]],[[[2],1]]]),_DG([["vector",alg,[]],[[[1],-1]]]),_DG([["vector",alg,[]],[[[5],1]]]),_DG([["vector",alg,[]],[[[6],1]]]),_DG([["vector",alg,[]],[[[3],-1]]]),_DG([["vector",alg,[]],[[[4],-1]]]),_DG([["vector",alg,[]],[[[8],1]]]),_DG([["vector",alg,[]],[[[7],-1]]])],[_DG([["vector",alg,[]],[[[3],1]]]),`| `,_DG([["vector",alg,[]],[[[3],1]]]),_DG([["vector",alg,[]],[[[5],-1]]]),_DG([["vector",alg,[]],[[[1],-1]]]),_DG([["vector",alg,[]],[[[7],1]]]),_DG([["vector",alg,[]],[[[2],1]]]),_DG([["vector",alg,[]],[[[8],-1]]]),_DG([["vector",alg,[]],[[[4],-1]]]),_DG([["vector",alg,[]],[[[6],1]]])],[_DG([["vector",alg,[]],[[[4],1]]]),`| `,_DG([["vector",alg,[]],[[[4],1]]]),_DG([["vector",alg,[]],[[[6],-1]]]),_DG([["vector",alg,[]],[[[7],-1]]]),_DG([["vector",alg,[]],[[[1],-1]]]),_DG([["vector",alg,[]],[[[8],1]]]),_DG([["vector",alg,[]],[[[2],1]]]),_DG([["vector",alg,[]],[[[3],1]]]),_DG([["vector",alg,[]],[[[5],-1]]])],[_DG([["vector",alg,[]],[[[5],1]]]),`| `,_DG([["vector",alg,[]],[[[5],1]]]),_DG([["vector",alg,[]],[[[3],1]]]),_DG([["vector",alg,[]],[[[2],-1]]]),_DG([["vector",alg,[]],[[[8],1]]]),_DG([["vector",alg,[]],[[[1],-1]]]),_DG([["vector",alg,[]],[[[7],1]]]),_DG([["vector",alg,[]],[[[6],-1]]]),_DG([["vector",alg,[]],[[[4],-1]]])],[_DG([["vector",alg,[]],[[[6],1]]]),`| `,_DG([["vector",alg,[]],[[[6],1]]]),_DG([["vector",alg,[]],[[[4],1]]]),_DG([["vector",alg,[]],[[[8],-1]]]),_DG([["vector",alg,[]],[[[2],-1]]]),_DG([["vector",alg,[]],[[[7],-1]]]),_DG([["vector",alg,[]],[[[1],-1]]]),_DG([["vector",alg,[]],[[[5],1]]]),_DG([["vector",alg,[]],[[[3],1]]])],[_DG([["vector",alg,[]],[[[7],1]]]),`| `,_DG([["vector",alg,[]],[[[7],1]]]),_DG([["vector",alg,[]],[[[8],1]]]),_DG([["vector",alg,[]],[[[4],1]]]),_DG([["vector",alg,[]],[[[3],-1]]]),_DG([["vector",alg,[]],[[[6],1]]]),_DG([["vector",alg,[]],[[[5],-1]]]),_DG([["vector",alg,[]],[[[1],-1]]]),_DG([["vector",alg,[]],[[[2],-1]]])],[_DG([["vector",alg,[]],[[[8],1]]]),`| `,_DG([["vector",alg,[]],[[[8],1]]]),_DG([["vector",alg,[]],[[[7],-1]]]),_DG([["vector",alg,[]],[[[6],1]]]),_DG([["vector",alg,[]],[[[5],-1]]]),_DG([["vector",alg,[]],[[[4],-1]]]),_DG([["vector",alg,[]],[[[3],1]]]),_DG([["vector",alg,[]],[[[2],-1]]]),_DG([["vector",alg,[]],[[[1],1]]])]]]"

(3)

Q := LinearAlgebra:-DiagonalMatrix([1, -1, 0]);

Q := Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = -1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0})

(4)

ADA1 := AlgebraLibraryData("Clifford(3)", alg1, quadraticform = Q);

_DG([["Algebra", alg1, [8, table( [ ] )]], [[[1, 1, 1], 1], [[1, 2, 2], 1], [[1, 3, 3], 1], [[1, 4, 4], 1], [[1, 5, 5], 1], [[1, 6, 6], 1], [[1, 7, 7], 1], [[1, 8, 8], 1], [[2, 1, 2], 1], [[2, 2, 1], -1], [[2, 3, 5], 1], [[2, 4, 6], 1], [[2, 5, 3], -1], [[2, 6, 4], -1], [[2, 7, 8], 1], [[2, 8, 7], -1], [[3, 1, 3], 1], [[3, 2, 5], -1], [[3, 3, 1], 1], [[3, 4, 7], 1], [[3, 5, 2], -1], [[3, 6, 8], -1], [[3, 7, 4], 1], [[3, 8, 6], -1], [[4, 1, 4], 1], [[4, 2, 6], -1], [[4, 3, 7], -1], [[4, 5, 8], 1], [[5, 1, 5], 1], [[5, 2, 3], 1], [[5, 3, 2], 1], [[5, 4, 8], 1], [[5, 5, 1], 1], [[5, 6, 7], 1], [[5, 7, 6], 1], [[5, 8, 4], 1], [[6, 1, 6], 1], [[6, 2, 4], 1], [[6, 3, 8], -1], [[6, 5, 7], -1], [[7, 1, 7], 1], [[7, 2, 8], 1], [[7, 3, 4], -1], [[7, 5, 6], -1], [[8, 1, 8], 1], [[8, 2, 7], -1], [[8, 3, 6], -1], [[8, 5, 4], 1]]])

(5)

DGsetup(ADA1);

`algebra name: alg1`

(6)

MultiplicationTable(alg1, "AlgebraTable")

"[[[,`| `,_DG([["vector",alg1,[]],[[[1],1]]]),_DG([["vector",alg1,[]],[[[2],1]]]),_DG([["vector",alg1,[]],[[[3],1]]]),_DG([["vector",alg1,[]],[[[4],1]]]),_DG([["vector",alg1,[]],[[[5],1]]]),_DG([["vector",alg1,[]],[[[6],1]]]),_DG([["vector",alg1,[]],[[[7],1]]]),_DG([["vector",alg1,[]],[[[8],1]]])],[,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `],[_DG([["vector",alg1,[]],[[[1],1]]]),`| `,_DG([["vector",alg1,[]],[[[1],1]]]),_DG([["vector",alg1,[]],[[[2],1]]]),_DG([["vector",alg1,[]],[[[3],1]]]),_DG([["vector",alg1,[]],[[[4],1]]]),_DG([["vector",alg1,[]],[[[5],1]]]),_DG([["vector",alg1,[]],[[[6],1]]]),_DG([["vector",alg1,[]],[[[7],1]]]),_DG([["vector",alg1,[]],[[[8],1]]])],[_DG([["vector",alg1,[]],[[[2],1]]]),`| `,_DG([["vector",alg1,[]],[[[2],1]]]),_DG([["vector",alg1,[]],[[[1],-1]]]),_DG([["vector",alg1,[]],[[[5],1]]]),_DG([["vector",alg1,[]],[[[6],1]]]),_DG([["vector",alg1,[]],[[[3],-1]]]),_DG([["vector",alg1,[]],[[[4],-1]]]),_DG([["vector",alg1,[]],[[[8],1]]]),_DG([["vector",alg1,[]],[[[7],-1]]])],[_DG([["vector",alg1,[]],[[[3],1]]]),`| `,_DG([["vector",alg1,[]],[[[3],1]]]),_DG([["vector",alg1,[]],[[[5],-1]]]),_DG([["vector",alg1,[]],[[[1],1]]]),_DG([["vector",alg1,[]],[[[7],1]]]),_DG([["vector",alg1,[]],[[[2],-1]]]),_DG([["vector",alg1,[]],[[[8],-1]]]),_DG([["vector",alg1,[]],[[[4],1]]]),_DG([["vector",alg1,[]],[[[6],-1]]])],[_DG([["vector",alg1,[]],[[[4],1]]]),`| `,_DG([["vector",alg1,[]],[[[4],1]]]),_DG([["vector",alg1,[]],[[[6],-1]]]),_DG([["vector",alg1,[]],[[[7],-1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[8],1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]])],[_DG([["vector",alg1,[]],[[[5],1]]]),`| `,_DG([["vector",alg1,[]],[[[5],1]]]),_DG([["vector",alg1,[]],[[[3],1]]]),_DG([["vector",alg1,[]],[[[2],1]]]),_DG([["vector",alg1,[]],[[[8],1]]]),_DG([["vector",alg1,[]],[[[1],1]]]),_DG([["vector",alg1,[]],[[[7],1]]]),_DG([["vector",alg1,[]],[[[6],1]]]),_DG([["vector",alg1,[]],[[[4],1]]])],[_DG([["vector",alg1,[]],[[[6],1]]]),`| `,_DG([["vector",alg1,[]],[[[6],1]]]),_DG([["vector",alg1,[]],[[[4],1]]]),_DG([["vector",alg1,[]],[[[8],-1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[7],-1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]])],[_DG([["vector",alg1,[]],[[[7],1]]]),`| `,_DG([["vector",alg1,[]],[[[7],1]]]),_DG([["vector",alg1,[]],[[[8],1]]]),_DG([["vector",alg1,[]],[[[4],-1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[6],-1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]])],[_DG([["vector",alg1,[]],[[[8],1]]]),`| `,_DG([["vector",alg1,[]],[[[8],1]]]),_DG([["vector",alg1,[]],[[[7],-1]]]),_DG([["vector",alg1,[]],[[[6],-1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[4],1]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]]),_DG([["vector",alg1,[]],[[[1],0]]])]]]"

(7)

NULL

StructureEquations := [[x1, x1] = x1, [x1, x2] = x2, [x1, x3] = x3, [x1, x4] = x4, [x1, x5] = x1*x5, [x1, x6] = x5*x2, [x1, x7] = x5*x3, [x1, x8] = x5*x4, [x2, x1] = x2, [x2, x2] = -1, [x2, x3] = x4, [x2, x4] = -x3, [x2, x5] = x5*x2, [x2, x6] = -x5, [x2, x7] = x5*x4, [x2, x8] = -x5*x3, [x3, x1] = x3, [x3, x2] = -x4, [x3, x3] = -1, [x3, x4] = x2, [x3, x5] = x5*x3, [x3, x6] = -x5*x4, [x3, x7] = -x5, [x3, x8] = x5*x2, [x4, x1] = x4, [x4, x2] = x3, [x4, x3] = -x2, [x4, x4] = -1, [x4, x5] = x5*x4, [x4, x6] = x5*x3, [x4, x7] = -x5*x2, [x4, x8] = -x5, [x5, x1] = x5, [x5, x2] = x5*x2, [x5, x3] = x5*x3, [x5, x4] = x5*x4, [x5, x5] = 0, [x6, x1] = x5*x2, [x6, x2] = -x5, [x6, x3] = x5*x4, [x6, x4] = -x5*x3, [x7, x1] = x5*x3, [x7, x2] = -x8, [x7, x3] = -x5, [x7, x4] = x5*x2, [x8, x1] = x5*x4, [x8, x2] = x5*x3, [x8, x3] = -x5*x2, [x8, x4] = -x5]

[[x1, x1] = x1, [x1, x2] = x2, [x1, x3] = x3, [x1, x4] = x4, [x1, x5] = x1*x5, [x1, x6] = x5*x2, [x1, x7] = x5*x3, [x1, x8] = x5*x4, [x2, x1] = x2, [x2, x2] = -1, [x2, x3] = x4, [x2, x4] = -x3, [x2, x5] = x5*x2, [x2, x6] = -x5, [x2, x7] = x5*x4, [x2, x8] = -x5*x3, [x3, x1] = x3, [x3, x2] = -x4, [x3, x3] = -1, [x3, x4] = x2, [x3, x5] = x5*x3, [x3, x6] = -x5*x4, [x3, x7] = -x5, [x3, x8] = x5*x2, [x4, x1] = x4, [x4, x2] = x3, [x4, x3] = -x2, [x4, x4] = -1, [x4, x5] = x5*x4, [x4, x6] = x5*x3, [x4, x7] = -x5*x2, [x4, x8] = -x5, [x5, x1] = x5, [x5, x2] = x5*x2, [x5, x3] = x5*x3, [x5, x4] = x5*x4, [x5, x5] = 0, [x6, x1] = x5*x2, [x6, x2] = -x5, [x6, x3] = x5*x4, [x6, x4] = -x5*x3, [x7, x1] = x5*x3, [x7, x2] = -x8, [x7, x3] = -x5, [x7, x4] = x5*x2, [x8, x1] = x5*x4, [x8, x2] = x5*x3, [x8, x3] = -x5*x2, [x8, x4] = -x5]

(8)

``

DGsetup(StructureEquations, [x1, x2, x3, x4, x5, x6, x7, x8])

Error, (in DifferentialGeometry:-DGsetup) expected 3 arguments [list(equations defining forms), list(structure equations), frame name]

 

Q2 := Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0})

Q2 := Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0})

(9)

ADA2 := AlgebraLibraryData("Clifford(3)", alg2, quadraticform = Q2)

_DG([["Algebra", alg2, [8, table( [ ] )]], [[[1, 1, 1], 1], [[1, 2, 2], 1], [[1, 3, 3], 1], [[1, 4, 4], 1], [[1, 5, 5], 1], [[1, 6, 6], 1], [[1, 7, 7], 1], [[1, 8, 8], 1], [[2, 1, 2], 1], [[2, 2, 1], -1], [[2, 3, 5], 1], [[2, 4, 6], 1], [[2, 5, 3], -1], [[2, 6, 4], -1], [[2, 7, 8], 1], [[2, 8, 7], -1], [[3, 1, 3], 1], [[3, 2, 5], -1], [[3, 3, 1], -1], [[3, 4, 7], 1], [[3, 5, 2], 1], [[3, 6, 8], -1], [[3, 7, 4], -1], [[3, 8, 6], 1], [[4, 1, 4], 1], [[4, 2, 6], -1], [[4, 3, 7], -1], [[4, 5, 8], 1], [[5, 1, 5], 1], [[5, 2, 3], 1], [[5, 3, 2], -1], [[5, 4, 8], 1], [[5, 5, 1], -1], [[5, 6, 7], 1], [[5, 7, 6], -1], [[5, 8, 4], -1], [[6, 1, 6], 1], [[6, 2, 4], 1], [[6, 3, 8], -1], [[6, 5, 7], -1], [[7, 1, 7], 1], [[7, 2, 8], 1], [[7, 3, 4], 1], [[7, 5, 6], 1], [[8, 1, 8], 1], [[8, 2, 7], -1], [[8, 3, 6], 1], [[8, 5, 4], -1]]])

(10)

DGsetup(ADA2)

`algebra name: alg2`

(11)

MultiplicationTable(alg2, "AlgebraTable")

"[[[,`| `,_DG([["vector",alg2,[]],[[[1],1]]]),_DG([["vector",alg2,[]],[[[2],1]]]),_DG([["vector",alg2,[]],[[[3],1]]]),_DG([["vector",alg2,[]],[[[4],1]]]),_DG([["vector",alg2,[]],[[[5],1]]]),_DG([["vector",alg2,[]],[[[6],1]]]),_DG([["vector",alg2,[]],[[[7],1]]]),_DG([["vector",alg2,[]],[[[8],1]]])],[,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `,-`--- `],[_DG([["vector",alg2,[]],[[[1],1]]]),`| `,_DG([["vector",alg2,[]],[[[1],1]]]),_DG([["vector",alg2,[]],[[[2],1]]]),_DG([["vector",alg2,[]],[[[3],1]]]),_DG([["vector",alg2,[]],[[[4],1]]]),_DG([["vector",alg2,[]],[[[5],1]]]),_DG([["vector",alg2,[]],[[[6],1]]]),_DG([["vector",alg2,[]],[[[7],1]]]),_DG([["vector",alg2,[]],[[[8],1]]])],[_DG([["vector",alg2,[]],[[[2],1]]]),`| `,_DG([["vector",alg2,[]],[[[2],1]]]),_DG([["vector",alg2,[]],[[[1],-1]]]),_DG([["vector",alg2,[]],[[[5],1]]]),_DG([["vector",alg2,[]],[[[6],1]]]),_DG([["vector",alg2,[]],[[[3],-1]]]),_DG([["vector",alg2,[]],[[[4],-1]]]),_DG([["vector",alg2,[]],[[[8],1]]]),_DG([["vector",alg2,[]],[[[7],-1]]])],[_DG([["vector",alg2,[]],[[[3],1]]]),`| `,_DG([["vector",alg2,[]],[[[3],1]]]),_DG([["vector",alg2,[]],[[[5],-1]]]),_DG([["vector",alg2,[]],[[[1],-1]]]),_DG([["vector",alg2,[]],[[[7],1]]]),_DG([["vector",alg2,[]],[[[2],1]]]),_DG([["vector",alg2,[]],[[[8],-1]]]),_DG([["vector",alg2,[]],[[[4],-1]]]),_DG([["vector",alg2,[]],[[[6],1]]])],[_DG([["vector",alg2,[]],[[[4],1]]]),`| `,_DG([["vector",alg2,[]],[[[4],1]]]),_DG([["vector",alg2,[]],[[[6],-1]]]),_DG([["vector",alg2,[]],[[[7],-1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[8],1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]])],[_DG([["vector",alg2,[]],[[[5],1]]]),`| `,_DG([["vector",alg2,[]],[[[5],1]]]),_DG([["vector",alg2,[]],[[[3],1]]]),_DG([["vector",alg2,[]],[[[2],-1]]]),_DG([["vector",alg2,[]],[[[8],1]]]),_DG([["vector",alg2,[]],[[[1],-1]]]),_DG([["vector",alg2,[]],[[[7],1]]]),_DG([["vector",alg2,[]],[[[6],-1]]]),_DG([["vector",alg2,[]],[[[4],-1]]])],[_DG([["vector",alg2,[]],[[[6],1]]]),`| `,_DG([["vector",alg2,[]],[[[6],1]]]),_DG([["vector",alg2,[]],[[[4],1]]]),_DG([["vector",alg2,[]],[[[8],-1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[7],-1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]])],[_DG([["vector",alg2,[]],[[[7],1]]]),`| `,_DG([["vector",alg2,[]],[[[7],1]]]),_DG([["vector",alg2,[]],[[[8],1]]]),_DG([["vector",alg2,[]],[[[4],1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[6],1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]])],[_DG([["vector",alg2,[]],[[[8],1]]]),`| `,_DG([["vector",alg2,[]],[[[8],1]]]),_DG([["vector",alg2,[]],[[[7],-1]]]),_DG([["vector",alg2,[]],[[[6],1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[4],-1]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]]),_DG([["vector",alg2,[]],[[[1],0]]])]]]"

(12)

Q3 := Matrix(4, 4, {(1, 1) = -1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = -1, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -1, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0})

Q3 := Matrix(4, 4, {(1, 1) = -1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = -1, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -1, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0})

(13)

``

``

``


Download Clifford.mw

 

@Markiyan Hirnyk 

Hello do you know where this book can be purchased from and is it written in English?

@vv Thank you. worled well!

@Markiyan Hirnyk What I mean't was e.g (form one of the answers supplied) 

I wish to see what the Basis equations contain in terms of the produsts of the variables.

 

@nutnutman Firstly "vv 575" substitution method is really excellent. I decided to try a bit more complex too. Higher order derivatives and mixed derivatives. I looked at the link you provided, I didn't have a clue either. Have not used the substitution method here but it could be applied.

restart

The Next 2 lines are just testing

``

sum(a^i, i = 1 .. 6)+sum(a^i, i = 8 .. 3)+sum(a^i, i = 5 .. 10)+a^7+a^4

a^10+a^9+a^8+a^7+a^6+a^5+a^4+a^3+a^2+a

(1)

sum(a^i, i = 1 .. l-1)+sum(a^i, i = l+1 .. p-1)+sum(a^i, i = p+1 .. 10)+a^l+a^p

a^l/(a-1)-a/(a-1)+a^p/(a-1)-a^(l+1)/(a-1)+a^11/(a-1)-a^(p+1)/(a-1)+a^l+a^p

(2)

s := sum((sum(f[t](x[i, k], a[k]), k = 1 .. l-1)+sum(f[t](x[i, k], a[k]), k = l+1 .. p-1)+sum(f[t](x[i, k], a[k]), k = p+1 .. n)+f[t](x[i, l], a[l])+f[t](x[i, p], a[p]))^2, i = 1 .. m)

sum((sum(f[t](x[i, k], a[k]), k = 1 .. l-1)+sum(f[t](x[i, k], a[k]), k = l+1 .. p-1)+sum(f[t](x[i, k], a[k]), k = p+1 .. n)+f[t](x[i, l], a[l])+f[t](x[i, p], a[p]))^2, i = 1 .. m)

(3)

dsa[l] := diff(s, a[l])

sum(2*(sum(f[t](x[i, k], a[k]), k = 1 .. l-1)+sum(f[t](x[i, k], a[k]), k = l+1 .. p-1)+sum(f[t](x[i, k], a[k]), k = p+1 .. n)+f[t](x[i, l], a[l])+f[t](x[i, p], a[p]))*(diff(f[t](x[i, l], a[l]), a[l])), i = 1 .. m)

(4)

d2sa[l] := diff(s, a[l], a[l])

sum(2*(diff(f[t](x[i, l], a[l]), a[l]))^2+2*(sum(f[t](x[i, k], a[k]), k = 1 .. l-1)+sum(f[t](x[i, k], a[k]), k = l+1 .. p-1)+sum(f[t](x[i, k], a[k]), k = p+1 .. n)+f[t](x[i, l], a[l])+f[t](x[i, p], a[p]))*(diff(diff(f[t](x[i, l], a[l]), a[l]), a[l])), i = 1 .. m)

(5)

dsa[p] := diff(s, a[p])

sum(2*(sum(f[t](x[i, k], a[k]), k = 1 .. l-1)+sum(f[t](x[i, k], a[k]), k = l+1 .. p-1)+sum(f[t](x[i, k], a[k]), k = p+1 .. n)+f[t](x[i, l], a[l])+f[t](x[i, p], a[p]))*(diff(f[t](x[i, p], a[p]), a[p])), i = 1 .. m)

(6)

``

d3 := diff(s, a[l], a[p])

sum(2*(diff(f[t](x[i, p], a[p]), a[p]))*(diff(f[t](x[i, l], a[l]), a[l])), i = 1 .. m)

(7)

d4 := diff(s, a[l], a[p], a[p])

sum(2*(diff(diff(f[t](x[i, p], a[p]), a[p]), a[p]))*(diff(f[t](x[i, l], a[l]), a[l])), i = 1 .. m)

(8)

``


Download diff_sum_2.mw

 

 

@vv Never thought of "subs" and being able to add them that way.

@Carl Love That is a point I wasn't sure about myself.

@nutnutman 

What I posted was just an idea. Don't really know what you are doing. Post a work sheet (as I did) with a more complex example. That might encourage others to look at the problem. Nobody wants to retype complex formulas.

I am using Maple 18. Documentation says Solidworks 2013 required. I am on SW 2015. Connection won't open. Have you access to SW 2013?

@Kitonum That works quitew well.

@Thomas Richard  Thank You

Well I can't see a way. I was oringinaly asking hopeing maple could automatically reduce the answer. The original problem was to do with a problem in Rational Trigonometry. I wandered off into the weeds working it out (with the help of Maple) as my answer shows. Here is a link to how the solution is arrived at http://www.youtube.com/watch?v=FsQb0_Lgphc&list=PL3C58498718451C47 . I guess one would need to evaluate/ relate both solutions and see how one  relates to the other. I don't have a tidy worksheet that is worth posting. I could do one though.

Well I can't see a way. I was oringinaly asking hopeing maple could automatically reduce the answer. The original problem was to do with a problem in Rational Trigonometry. I wandered off into the weeds working it out (with the help of Maple) as my answer shows. Here is a link to how the solution is arrived at http://www.youtube.com/watch?v=FsQb0_Lgphc&list=PL3C58498718451C47 . I guess one would need to evaluate/ relate both solutions and see how one  relates to the other. I don't have a tidy worksheet that is worth posting. I could do one though.


rationalize(expand(41/sqrt(2141+936*sqrt(5)-4*sqrt(488725+218558*sqrt(5)))))

-(1/68921)*(2141+936*5^(1/2)-4*(488725+218558*5^(1/2))^(1/2))^(1/2)*(2141+936*5^(1/2)+4*(488725+218558*5^(1/2))^(1/2))*(-681+304*5^(1/2))

(1)

``

``

(->)

2.4530850560107217717909335149612374992321847859381

(2)

``

``

2*sqrt(5-2*sqrt(5))+1

2*(5-2*5^(1/2))^(1/2)+1

(3)

(->)

2.4530850560107217717909335149612374992321847859305

(4)

``


Download Rationalize_ans.mw


Look like worksheet didn't attach. "nd try

In the definition of spherical coords the order is r, theta , phi

SetCoordinates('spherical'[r, theta, phi]),

in the definition of the Vector field the order is r, phi ,theta

A := VectorField(`<,>`(A_r(r, phi, theta), `A_θ`(r, phi, theta), `A_φ`(r, phi, theta)))

Why is this?

First 20 21 22 23 24 Page 22 of 24