Umang Varshney

15 Reputation

One Badge

4 years, 349 days

MaplePrimes Activity


These are questions asked by Umang Varshney

doubt4.mw

Hi, As shown in the figure(red color). I am not able to understand why Exp(0) is not showing as 1. As evaluating rules of maple says that it evaluates everything till it gets unassigned variables.

Do I am doing something wrong? There is a link to the file. 

Thanks in advance

doubt_3.mw

Hi, I am trying to do a simple think like

od2 := diff(x^3, x)+v+2 = 0

od3 := diff(v^2, v)+x+4 = 0

solve({(1),(2)},{x,v})

 

but with my code,  I am doing the exact same but getting the following error

Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({list, set})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received {[1316.872428*(-0.1500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+3.000000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-3.000000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(int(.2*(.1*t+1)*i__m2(t), t = 0 .. t__2))/N^.98-11.76000000/(N^.98*((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2))+1185.185185*(-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-6.0000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))/(N^.98*((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2))+6.00*(-75.50000000*N^2.02+45.45000000*N^1.02+306.00*N^0.2e-1)/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)-1.200000000/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)-9.6*(-75.37500000*N^3.02+45.30000000*N^2.02+303.00*N^1.02)/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)] = 0, [-650*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2+65843.62140*N^0.2e-1*(-0.6750000000e-3*t__2^2-0.1350000000e-1*t__2+0.7500000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`-0.9000000000e-1-0.1500000000e-1*t__2*(0.900e-1*t__2+.90)+3.000000*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.900e-1*t__2+.90)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.6914062500e-6*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.6914062500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.1464843750e-7*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.1464843750e-7*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.1064062500e-3*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.1064062500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(int(.2*(.1*t+1)*i__m2(t), t = 0 .. t__2))+65843.62140*N^0.2e-1*(-0.1500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+3.000000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-3.000000)*(-0.5625000000e-3*t__2^2-0.1125000000e-1*t__2+0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`-0.7500000000e-1-0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(int(.2*(.1*t+1)*i__m2(t), t = 0 .. t__2))+13168.72428*N^0.2e-1*(-0.1500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+3.000000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-3.000000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(.1*t__2+1)*i__m2(t__2)+588.0000000*N^0.2e-1*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2+.60*(98765.43210*N^0.2e-1*(-0.5859375000e-5*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.5859375000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.9796875000e-3*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.9796875000e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.900e-1*t__2+.90)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+98765.43210*N^0.2e-1*(-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-6.0000)*(-0.5625000000e-3*t__2^2-0.1125000000e-1*t__2+0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`-0.7500000000e-1-0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+i__m2(t__2))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)-.60*(98765.43210*N^0.2e-1*(-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-6.0000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+int(i__m2(t), t = 0 .. t__2))*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-(0.1500000000e-2*T^2+0.3000000000e-1*T)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-6.00*(-25.00000000*N^3.02+22.50000000*N^2.02+300*N^1.02)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-.1700000000*T*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-2.4*(.1000000000*T-.2000000000)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-4*(0.1562500000e-3*T^2+0.1250000000e-1*T)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-12.0*(0.2500000000e-1*T-.1000000000*N)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2+9.6*(-18.75000000*N^4.02+15.00000000*N^3.02+150*N^2.02)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2] = 0}

 

Please help

Thanks in advance 

Hi, am trying to differentiate the following eq w.r.t t2 and N. But in t2 I am getting zero and in wrt N, an Error (non-algebraic expressions cannot be differentiated). But according to the article, I am following expression should come.

I am differentiating following

TCS := proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc

ode5 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, t__2) = 0

ode6 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, N) = 0

Error, non-algebraic expressions cannot be differentiated
 

following are the pre-requisite to use above (also in the attachment doubt_2.mw)

i__m1(t) = ((-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t)

i__m2(t) = (-(-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(-theta__m*t)

TC__m := A__m/(t__1+t__2)+(int(h__m*(i__m*t+1)*i__m1(t), t = 0 .. t__1))*(int(h__m*(i__m*t+1)*i__m2(t), t = 0 .. t__2))+P__m*I__om*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)+C__m*theta__m*(int(i__m1(t), t = 0 .. t__1)+int(i__m2(t), t = 0 .. t__2))/(t__1+t__2)

i__d(t) = (-(-c*t^2*theta__d^2+b*t*theta__d^2+2*c*t*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t)/theta__d^3+(-c*t__3^2*theta__d^2+b*t__3*theta__d^2+2*c*t__3*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t__3)/theta__d^3)*exp(-theta__d*t)

TC__d1 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__m*I__c*m*(int(i__d(t), t = M .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)

TC__d2 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/4)*a*c*N^alpha*t__3^4+(1/3)*a*b*N^alpha*t__3^3+(1/2)*a*N^alpha*t__3^2+M-t__3-(1/3)*a*c*N^alpha*t__3^3+(1/2)*a*b*N^alpha*t__3^2+a*N^alpha*t__3)/(t__1+t__2)

i__r(t) = (-(-c*t^2*theta__r^2+b*t*theta__r^2+2*c*t*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t)/theta__r^3+(-c*t__4^2*theta__r^2+b*t__4*theta__r^2+2*c*t__4*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t__4)/theta__r^3)*exp(-theta__r*t)

TC__r1 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*I__c*m*n*(int(i__r(t), t = N .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*N^4+(1/3)*a*b*N^alpha*N^3+(1/2)*a*N^alpha*N^2)/(t__1+t__2)

TC__r2 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*t__4^4+(1/3)*a*b*N^alpha*t__4^3+(1/2)*a*N^alpha*t__4^2+N-t__4-(1/3)*a*c*N^alpha*t__4^3+(1/2)*a*b*N^alpha*t__4^2+a*N^alpha*t__4)/(t__1+t__2)

TCS__1 := TC__m+TC__d1+TC__r1

TCS__2 := TC__m+TC__d1+TC__r2

TCS__3 := TC__m+TC__d2+TC__r1

TCS__4 := TC__m+TC__d2+TC__r2

 

Thanks in advance.


doubt_1.mw

Hi, I am trying to solve two simultaneous equations (for t1) they are as follows-

eq 1

i__m2(0) = (-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(0)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3+(-c*t__2^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__2)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(0)

eq 2

i__m1(t__1) = ((-c*t__1^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(-`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)

rhs(i__m2(0) = (-(-b*theta__m+theta__m^2-2*c)*exp(0)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(0)) = rhs(i__m1(t__1) = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1))

solve({-(-b*theta__m+theta__m^2-2*c)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3 = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1)}, [t__1]);
Warning, solutions may have been lost
 

Can someone, please help. Thanks in advance.

1 2 Page 2 of 2