Yee Voon

20 Reputation

2 Badges

7 years, 273 days

MaplePrimes Activity


These are questions asked by Yee Voon

Basic_Reproduction_Number.mw
Hello, anybody knows how to compute sensitivity analysis for basic reproduction number using Maple coding? By taking the partial derivatives of all the parameters involved in the basic reproduction number using normalised forward sensitivity index formula. Thanks.

restart

unprotect(Pi)

R[0] := k*tau*[(rho*(Upsilon*(mu+alpha+eta)+chi)+(1-rho)*(Upsilon*(1-q)*eta+mu+beta+chi))/((mu+beta+chi)*(mu+alpha+eta)-chi*eta*(1-q))]*(Pi*(-mu*p+mu+phi)/(mu*(vartheta+mu+phi))+epsilon*Pi*(mu*p+vartheta)/(mu*(vartheta+mu+phi)))

k*tau*[(rho*(Upsilon*(mu+alpha+eta)+chi)+(1-rho)*(Upsilon*(1-q)*eta+mu+beta+chi))/((mu+beta+chi)*(mu+alpha+eta)-chi*eta*(1-q))]*(Pi*(-mu*p+mu+phi)/(mu*(vartheta+mu+phi))+epsilon*Pi*(mu*p+vartheta)/(mu*(vartheta+mu+phi)))

(1)

``


 

Download Basic_Reproduction_Number.mw

 

Does anyone know how to calculate basic reproduction number using maple coding? Or by any chance, anyone know how to solve it by hand with this complicated equations?
 

restart

interface(imaginaryunit = j)

I

(1)

lambda := k*tau*(C*Upsilon+I)/N

k*tau*(C*Upsilon+I)/N

(2)

eqn1 := (1-p)*Pi+phi*V+delta*R-(mu+lambda+`ϑ`)*S

(1-p)*Pi+phi*V+delta*R-(mu+k*tau*(C*Upsilon+I)/N+vartheta)*S

(3)

eqn2 := p*Pi+`ϑ`*S-(lambda*`ε`+mu+phi)*V

p*Pi+vartheta*S-(epsilon*k*tau*(C*Upsilon+I)/N+mu+phi)*V

(4)

eqn3 := rho*lambda*S+rho*`ε`*lambda*V+I*(1-q)*eta-(mu+beta+chi)*C

rho*k*tau*(C*Upsilon+I)*S/N+rho*epsilon*k*tau*(C*Upsilon+I)*V/N+(1-q)*eta*I-(mu+beta+chi)*C

(5)

eqn4 := (1-rho)*lambda*S+(1-rho)*`ε`*lambda*V+chi*C-I*(mu+alpha+eta)

(1-rho)*k*tau*(C*Upsilon+I)*S/N+(1-rho)*epsilon*k*tau*(C*Upsilon+I)*V/N+chi*C-(mu+alpha+eta)*I

(6)

eqn5 := beta*C+I*q*eta-(mu+delta)*R

beta*C+q*eta*I-(mu+delta)*R

(7)

``


 

Download Equation_for_basic_reproduction_number.mwEquation_for_basic_reproduction_number.mw


I am trying to find for the equilibrium but why my solutions lost?

restart

interface(imaginaryunit = j);

I

(1)

unprotect(Pi)

lambda := k*tau*(C*Upsilon+I)/N;

k*tau*(C*Upsilon+I)/N

(2)

eqn1 := (1-p)*Pi+phi*V+delta*R-(mu+lambda+vartheta)*S;

(1-p)*Pi+phi*V+delta*R-(mu+k*tau*(C*Upsilon+I)/N+vartheta)*S

(3)

eqn2 := p*Pi+vartheta*S-(epsilon*lambda+mu+phi)*V;

p*Pi+vartheta*S-(epsilon*k*tau*(C*Upsilon+I)/N+mu+phi)*V

(4)

eqn3 := rho*lambda*S+rho*epsilon*lambda*V+(1-q)*eta*I-(mu+beta+chi)*C;

rho*k*tau*(C*Upsilon+I)*S/N+rho*epsilon*k*tau*(C*Upsilon+I)*V/N+(1-q)*eta*I-(mu+beta+chi)*C

(5)

eqn4 := (1-rho)*lambda*S+(1-rho)*epsilon*lambda*V+chi*C-(mu+alpha+eta)*I;

(1-rho)*k*tau*(C*Upsilon+I)*S/N+(1-rho)*epsilon*k*tau*(C*Upsilon+I)*V/N+chi*C-(mu+alpha+eta)*I

(6)

eqn5 := beta*C+q*eta*I-(mu+delta)*R;

beta*C+q*eta*I-(mu+delta)*R

(7)

mu := 0.1e-1;

0.1e-1

 

116.1

 

0.8e-2

 

0.25e-2

 

0.2e-2

 

0.5e-1

 

0.115e-1

 

0.598e-2

 

.5

 

.2

 

.1

 

0.57e-2

 

.2

 

11610

(8)

Equilibria := solve({eqn1 = 0, eqn2 = 0, eqn3 = 0, eqn4 = 0, eqn5 = 0}, {C, I, R, S, V});

Warning, solutions may have been lost

 

{C = 0., I = 0., R = 0., S = 5946.585366, V = 5663.414634}

(9)

``


 

Download Equilibria.mw
 

restart

interface(imaginaryunit = j);

I

(1)

unprotect(Pi)

lambda := k*tau*(C*Upsilon+I)/N;

k*tau*(C*Upsilon+I)/N

(2)

eqn1 := (1-p)*Pi+phi*V+delta*R-(mu+lambda+vartheta)*S;

(1-p)*Pi+phi*V+delta*R-(mu+k*tau*(C*Upsilon+I)/N+vartheta)*S

(3)

eqn2 := p*Pi+vartheta*S-(epsilon*lambda+mu+phi)*V;

p*Pi+vartheta*S-(epsilon*k*tau*(C*Upsilon+I)/N+mu+phi)*V

(4)

eqn3 := rho*lambda*S+rho*epsilon*lambda*V+(1-q)*eta*I-(mu+beta+chi)*C;

rho*k*tau*(C*Upsilon+I)*S/N+rho*epsilon*k*tau*(C*Upsilon+I)*V/N+(1-q)*eta*I-(mu+beta+chi)*C

(5)

eqn4 := (1-rho)*lambda*S+(1-rho)*epsilon*lambda*V+chi*C-(mu+alpha+eta)*I;

(1-rho)*k*tau*(C*Upsilon+I)*S/N+(1-rho)*epsilon*k*tau*(C*Upsilon+I)*V/N+chi*C-(mu+alpha+eta)*I

(6)

eqn5 := beta*C+q*eta*I-(mu+delta)*R;

beta*C+q*eta*I-(mu+delta)*R

(7)

mu := 0.1e-1;

0.1e-1

 

116.1

 

0.8e-2

 

0.25e-2

 

0.2e-2

 

0.5e-1

 

0.115e-1

 

0.598e-2

 

.5

 

.2

 

.1

 

0.57e-2

 

.2

 

11610

(8)

Equilibria := solve({eqn1 = 0, eqn2 = 0, eqn3 = 0, eqn4 = 0, eqn5 = 0}, {C, I, R, S, V});

Warning, solutions may have been lost

 

{C = 0., I = 0., R = 0., S = 5946.585366, V = 5663.414634}

(9)

``


 

Download Equilibria.mw

 

Anybody have idea how to solve endemic equilibrium using maple? 

dS/dt=(1−p)π+φV+δR−(μ+λ+ϑ)S

dV/dt=pπ+ϑS−(μ+ϵλ+φ)V

dC/dt=ρλS+ρϵλV+(1−q)ηI−(μ+β+χ)C

dI/dt=(1−ρ)λS+(1−ρ)ϵλV+χC−(μ+α+η)I

dR/dt=βC+qηI−(μ+δ)R

 

Or solve by hand?

0=(1−p)π+φV+δR−(μ+λ+ϑ)S

0=pπ+ϑS−(μ+ϵλ+φ)V

0=ρλS+ρϵλV+(1−q)ηI−(μ+β+χ)C

0=(1−ρ)λS+(1−ρ)ϵλV+χC−(μ+α+η)I

0=βC+qηI−(μ+δ)R

Anybody know how to solve using coding for all the variable S,V,C,I,R

1 2 3 Page 2 of 3