gkokovidis

2335 Reputation

13 Badges

20 years, 299 days
Draeger Medical Systems, Inc.

 

 

Regards,
Georgios Kokovidis
Dräger Medical

MaplePrimes Activity


These are answers submitted by gkokovidis

See help page here.

From within Maple, you can access it this way:

?Student[LinearAlgebra][SwapRow]

Regards,

Georgios Kokovidis

Dräger Medical

Here is one way.

MM:=<IQ|DT>:

ExportMatrix("C:/temp/Data2.dat", MM, target = Matlab, format = rectangular, mode = ascii):

This will concatenate your two Vectors and Export them to a file called Data2.dat in the C:\temp directory on a PC running Windows.
 

Regards,

Georgios Kokovidis

Dräger Medical

restart:

int(lambda/(A+B*lambda)^2,lambda=0..1) assuming A::positive, B::positive;

-(ln(A)*A+ln(A)*B+B-ln(A+B)*A-ln(A+B)*B)/(B^2*(A+B))

(1)

 

Download integ.mw

Regards,

Georgios Kokovidis

Dräger Medical

See this thread, and try setting smartview=false in your plot command.  If that doesn't work, then upload your whole worksheet.  I noticed that you are using the command with(linalg), which is deprecated.  The one to use would be with(LinearAlgebra), so there might be something ahead of the plot command that is confusing it, because of the "enhanced" plotting features in Maple 16.

 

> plot(cos((1/2)*x)+sin(2*x), x = 0 .. 4*Pi, smartview=false);

Regards,

Georgios Kokovidis

Dräger Medical

I don't have Maple 16 loaded on my home machine yet.  This was done with Maple 15.  Download the file and see if it runs without errors on Maple 16.

restart:

plot(cos((1/2)*x)+sin(2*x), x = 0 .. 4*Pi);

 

 

Download plots.mw

 

Regards,

Georgios Kokovidis

Dräger Medical

Another option would be to use fsolve with range parameters.  I'm not sure I typed the equations correctly. 

>eq1:=H=(v[0]*sin(theta[0])*(v[0]*sin(theta[0])+y[0]))/g-(v[0]*sin(theta[0])+y[0])^2 /(2*g)+y[0];

>eq2:=y[0]=((R^2*g)/(2*(v[0]*cos(theta[0]))^2))-R*tan(theta[0]);

>g:=9.81:v[0]:=200:H:=100:R:=100:

> fsolve({eq1,eq2},{y[0]=0..100,theta[0]=0..100});


{theta[0] = 46.89329035496190753,

y[0] = 24.77141685501522015}

 

Regards,

Georgios Kokovidis

Dräger Medical

There is a multiplication sign missing between the x and the y.

restart:

with(VectorCalculus):

SetCoordinates('cartesian'[x, y, z]);

cartesian[x, y, z]

(1)

Del(x*y);

Vector[column]([[y], [x], [0]], ["x", "y", "z"], "field")

(2)

Del(xy);

Vector[column]([[0], [0], [0]], ["x", "y", "z"], "field")

                     (3)

 

 

Download Del.mw

 

Regards,

Georgios Kokovidis

Dräger Medical

See help file here as a starting point.

 

Regards,

Georgios Kokovidis

Dräger Medical

Add a multiplication sign after your constants and try again.

evalf(invlaplace (15/(s^3 + 6*s^2 + 15*s + 15), s, t));

 

Regards,

Georgios Kokovidis

Dräger Medical

See the following link.  Using 314159265 as the searc string, it  returned:

The numeric string 314159265 appears at the 70,326,148th decimal digit of E.  Knowing this, you can try it in Maple, using the code provided.  I would not recommend it on a laptop, which is what I am using @ home.

Regards,

Georgios Kokovidis

Dräger Medical

Here is a short example that you can modify to get you started.

restart:with(StringTools):

evalf(exp(1),2000):

aa:=convert(%,string):

Search("314", aa);

858

                                             (1)

 

Download search.mw

 

Regards,

Georgios Kokovidis

Dräger Medical

Replace the curly brackets {} in equations e1-e9 and you should be al set, at least for the

Warning, solutions may have been lost part.

restart:

e1 := (1/2)*alpha[2]^2+6*delta*alpha[2];

 

e2 := alpha[2]*alpha[1]+delta*(10*alpha[2]*lambda-20*alpha[2]*d+2*alpha[1]);

 

e3 := -V*alpha[2]+(1/2)*alpha[1]^2+alpha[2]*alpha[0]+delta*(8*alpha[2]*(d^2-lambda*d+mu)+3*alpha[1]*(lambda-2*d)+(4*alpha[2]*lambda-8*alpha[2]*d)*(lambda-2*d));

 

e4 := -V*alpha[1]+alpha[2]*alpha[-1]+alpha[1]*alpha[0]+delta*((4*alpha[2]*lambda-8*alpha[2]*d+2*alpha[1])*(d^2-lambda*d+mu)+(2*alpha[2]*d^2-2*alpha[2]*lambda*d+2*alpha[2]*mu+alpha[1]*lambda-2*alpha[1]*d)*(lambda-2*d));

 

e5 := C-V*alpha[0]+(1/2)*alpha[0]^2+alpha[1]*alpha[-1]+alpha[2]*alpha[-2]+delta*((2*alpha[2]*d^2-2*alpha[2]*lambda*d+2*alpha[2]*mu+alpha[1]*lambda-2*alpha[1]*d)*(d^2-lambda*d+mu)+alpha[-1]*(lambda-2*d)+2*alpha[-2]);

 

e6 := -V*alpha[-1]+alpha[0]*alpha[-1]+alpha[1]*alpha[-2]+delta*((alpha[-1]*lambda-2*alpha[-1]*d+6*alpha[-2])*(lambda-2*d)+2*alpha[-1]*d^2-2*alpha[-1]*lambda*d+2*alpha[-1]*mu);

 

e7 := -V*alpha[-2]+(1/2)*alpha[-1]^2+alpha[0]*alpha[-2]+delta*((alpha[-1]*lambda-2*alpha[-1]*d+2*alpha[-2])*(d^2-lambda*d+mu)+(2*alpha[-1]*d^2-2*alpha[-1]*lambda*d+2*alpha[-1]*mu+4*alpha[-2]*lambda-8*alpha[-2]*d)*(lambda-2*d)+6*alpha[-2]*d^2-6*alpha[-2]*lambda*d+6*alpha[-2]*mu);

 

e8 := alpha[-1]*alpha[-2]+delta*(2*alpha[-1]*(d^2-lambda*d+mu)^2+(4*alpha[-2]*lambda-8*alpha[-2]*d)*(d^2-lambda*d+mu)+6*alpha[-2]*(lambda-2*d)*(d^2-lambda*d+mu));

 

e9 := (1/2)*alpha[-2]^2+6*delta*alpha[-2]*(d^2-lambda*d+mu)^2;

 

solve({e1, e2, e3, e4, e5, e6, e7, e8, e9}, [alpha[2], alpha[-2], alpha[0], alpha[1], alpha[-1], V, C]);

 

(1/2)*alpha[2]^2+6*delta*alpha[2]

 

alpha[2]*alpha[1]+delta*(10*alpha[2]*lambda-20*alpha[2]*d+2*alpha[1])

 

-V*alpha[2]+(1/2)*alpha[1]^2+alpha[2]*alpha[0]+delta*(8*alpha[2]*(d^2-lambda*d+mu)+3*alpha[1]*(lambda-2*d)+(4*alpha[2]*lambda-8*alpha[2]*d)*(lambda-2*d))

 

-V*alpha[1]+alpha[2]*alpha[-1]+alpha[1]*alpha[0]+delta*((4*alpha[2]*lambda-8*alpha[2]*d+2*alpha[1])*(d^2-lambda*d+mu)+(2*alpha[2]*d^2-2*alpha[2]*lambda*d+2*alpha[2]*mu+alpha[1]*lambda-2*alpha[1]*d)*(lambda-2*d))

 

C-V*alpha[0]+(1/2)*alpha[0]^2+alpha[1]*alpha[-1]+alpha[2]*alpha[-2]+delta*((2*alpha[2]*d^2-2*alpha[2]*lambda*d+2*alpha[2]*mu+alpha[1]*lambda-2*alpha[1]*d)*(d^2-lambda*d+mu)+alpha[-1]*(lambda-2*d)+2*alpha[-2])

 

-V*alpha[-1]+alpha[0]*alpha[-1]+alpha[1]*alpha[-2]+delta*((alpha[-1]*lambda-2*alpha[-1]*d+6*alpha[-2])*(lambda-2*d)+2*alpha[-1]*d^2-2*alpha[-1]*lambda*d+2*alpha[-1]*mu)

 

-V*alpha[-2]+(1/2)*alpha[-1]^2+alpha[0]*alpha[-2]+delta*((alpha[-1]*lambda-2*alpha[-1]*d+2*alpha[-2])*(d^2-lambda*d+mu)+(2*alpha[-1]*d^2-2*alpha[-1]*lambda*d+2*alpha[-1]*mu+4*alpha[-2]*lambda-8*alpha[-2]*d)*(lambda-2*d)+6*alpha[-2]*d^2-6*alpha[-2]*lambda*d+6*alpha[-2]*mu)

 

alpha[-1]*alpha[-2]+delta*(2*alpha[-1]*(d^2-lambda*d+mu)^2+(4*alpha[-2]*lambda-8*alpha[-2]*d)*(d^2-lambda*d+mu)+6*alpha[-2]*(lambda-2*d)*(d^2-lambda*d+mu))

 

(1/2)*alpha[-2]^2+6*delta*alpha[-2]*(d^2-lambda*d+mu)^2

 

[[alpha[2] = 0, alpha[-2] = 0, alpha[0] = alpha[0], alpha[1] = 0, alpha[-1] = 0, V = V, C = V*alpha[0]-(1/2)*alpha[0]^2], [alpha[2] = -12*delta, alpha[-2] = 0, alpha[0] = alpha[0], alpha[1] = -12*delta*lambda+24*delta*d, alpha[-1] = 0, V = -12*delta*lambda*d+12*delta*d^2+delta*lambda^2+8*delta*mu+alpha[0], C = -12*alpha[0]*delta*lambda*d+12*alpha[0]*delta*d^2+alpha[0]*delta*lambda^2+8*alpha[0]*delta*mu+(1/2)*alpha[0]^2+72*delta^2*d^4-144*delta^2*d^3*lambda+96*delta^2*d^2*mu+84*delta^2*lambda^2*d^2-96*delta^2*lambda*d*mu+24*delta^2*mu^2-12*delta^2*lambda^3*d+12*delta^2*mu*lambda^2], [alpha[2] = 0, alpha[-2] = -12*delta*(d^2-lambda*d+mu)^2, alpha[0] = alpha[0], alpha[1] = 0, alpha[-1] = 12*(2*d^3-3*lambda*d^2+lambda^2*d+2*d*mu-lambda*mu)*delta, V = -12*delta*lambda*d+12*delta*d^2+delta*lambda^2+8*delta*mu+alpha[0], C = -12*alpha[0]*delta*lambda*d+12*alpha[0]*delta*d^2+alpha[0]*delta*lambda^2+8*alpha[0]*delta*mu+(1/2)*alpha[0]^2+72*delta^2*d^4-144*delta^2*d^3*lambda+96*delta^2*d^2*mu+84*delta^2*lambda^2*d^2-96*delta^2*lambda*d*mu+24*delta^2*mu^2-12*delta^2*lambda^3*d+12*delta^2*mu*lambda^2]]

(1)

 

Download brackets.mw

 

Regards,

Georgios Kokovidis

Dräger Medical

restart:Digits:=20;

20

                                 (1)

eqn:=x*arccosh(56/x)-40;

x*arccosh(56/x)-40

(2)

plot(eqn,x=0..1000,thickness=2);

 

solve(eqn,x);

RootOf(arccosh(56/_Z)*_Z-40)

                                                                (3)

allvalues(%);

RootOf(arccosh(56/_Z)*_Z-40, 31.109442303035683230-10.324947980131277543*I), RootOf(arccosh(56/_Z)*_Z-40, 31.109442303035683230+10.324947980131277543*I)

(4)

answers:=evalf(%);

31.109442303035683230-10.324947980131277543*I, 31.109442303035683230+10.324947980131277543*I

(5)

ans1:=eval(eqn,x=answers[1]);

0.2e-17-0.83687961669673448110e-18*I

(6)

ans2:=eval(eqn,x=answers[2]);

0.2e-17+0.83687961669673448110e-18*I

(7)

abs(ans1)-abs(ans2);

0.

                                                                                                 (8)

 

Download roots.mw

Regards,

Georgios Kokovidis

Dräger Medical

Have you used Maple on your schools network locally and successfully loaded DirectSearch, or is this your first attempt, using a remote login?

The error message you are getting is due to the package not being found because it is not installed, or if it is installed, the search path in the maple.ini file does not include the path to the package.

 

What do you see when you type

>libname;

at the Maple prompt?  Do you see DirectSearch being displayed?

 

Regards,

Georgios Kokovidis

Dräger Medical

A brute force approach using the ?identify command (not computationaly efficient). 

restart:

ans:=solve(z^3=-sqrt(6)-sqrt(18)*I,z);

(-6^(1/2)-(3*I)*2^(1/2))^(1/3), -(1/2)*(-6^(1/2)-(3*I)*2^(1/2))^(1/3)-((1/2)*I)*3^(1/2)*(-6^(1/2)-(3*I)*2^(1/2))^(1/3), -(1/2)*(-6^(1/2)-(3*I)*2^(1/2))^(1/3)+((1/2)*I)*3^(1/2)*(-6^(1/2)-(3*I)*2^(1/2))^(1/3)

(1)

identify(evalf(abs(ans[1])));#Magnitude1

2^(1/2)*3^(1/6)

(2)

identify(evalf(argument(ans[1])));#Angle1

-(2/9)*Pi

(3)

identify(evalf(abs(ans[2])));#Magnitude2

2^(1/2)*3^(1/6)

(4)

identify(evalf(argument(ans[2])));#Angle2

-(8/9)*Pi

(5)

identify(evalf(abs(ans[3])));#Magnitude3

2^(1/2)*3^(1/6)

(6)

identify(evalf(argument(ans[3])));#Angle3

(4/9)*Pi

(7)

 

Download polarform.mw

 

Regards,

Georgios Kokovidis

Dräger Medical

First 10 11 12 13 14 15 16 Last Page 12 of 75