janhardo

335 Reputation

8 Badges

11 years, 6 days

MaplePrimes Activity


These are questions asked by janhardo

I must feed the not trivial zeros numbers into this aproximation formula ?

 

Riemann hypothese and staircase of primes

 

restart;

with(NumberTheory)

PrimeCounting(1)

0

(1)

pi(Pi)

2

(2)

PrimeCounting(10000)

1229

(3)

numelems(select(isprime, [seq(1 .. 10000)]))

1229

(4)

The prime counting function is approximated by Li(x) and x/ln(x).

plot([PrimeCounting(x), Li(x), x/ln(x)], x = 1 .. 500, legend = [pi(x), Li(x), x/ln(x)])

The staircase of primes approximated by two functions
Interesting is the video: How i learned to love and fear the Riemann Hypothesis

https://www.quantamagazine.org/how-i-learned-to-love-and-fear-the-riemann-hypothesis-20210104/

NULL

ps:=Array(1..30):
y:=0:
for n from 1 to 30 do
 if is(n,prime)
     then ps[n]:=plot([[n,y],[n,y+1],[n+1,y+1]]):
     y:=y+1;
     else ps[n]:=plot([[n,y],[n+1,y]]):
 end if ;
od;
with(plots):
display({seq(ps[n],n=1..30)}):  

plot([PrimeCounting(x)] ,x = 1 .. 35, legend = [pi(x)]):

plot([PrimeCounting(x), Li(x), x/ln(x)], x = 1 .. 35, legend = [pi(x), Li(x), x/ln(x)])

 

 

 

 

Prime counting function
What found RIEMANN for the prime counting function in relation to the zeta function after he defined the zeta function?

 

He found further a function what follows exactly the shape of the prime counting function

Final discovery v. Riemann.  

- step in the omhoog in de priemtelfunctie = log(p) (zie video)

 

Using the logarithmic primecount function( from Chebyshev) (approximation)
Further  analyse with this Chebyshev approximation formula in relation to the not trivial zero points from Riemann zeta function ( zeros) gives another real function for approximating the primecounting function what uses the non trivial zeros from Riemanns zeta function  in this function:

 

"(not trivial zeros ) u[k ] = "i*w[k]+v[k]   
Number now all nottrivial zeros in the upperhalfplane from down to bottom,  as u[1], u[2], u[3, () .. ()]

"`ϕ`(x)  := x-ln(2Pi)-1/(2 )ln(1-1/(x^(2))) - (∑)2/(|u[k]|) x^(v[k]) cos(w[k] ln(x)-alpha[k])"

NULL

Its only alpha[k] that must be calculated out of the not trivial zeros and i must have a list of  serie of not trivial zeroes from the zeta function. => see Hardy's Z(t) ? from this ..... alpha[k]  can be calculated ?
All not trivial zeros are complex numbers laying on a line ,but  orginating from (0,0) in the complex plane as  vectors to the points    

varphi(x):= x - ln(2*Pi) - 1/2*ln(1 - 1/x^2) - sum(2*x^v[k]*cos(w[k]*ln(x) - alpha[k])/abs(u[k]), k = 1 .. infinity);

x-ln(2*Pi)-(1/2)*ln(1-1/x^2)-(sum(2*x^v[k]*cos(-w[k]*ln(x)+alpha[k])/abs(u[k]), k = 1 .. infinity))

(5)

This formula seems to be correct .
Now how to make a plot ?
Hardy's Z(t) function shows the not trivial zeros in the upperhalfplane of the critical strip of the Riemann zeta function  as zeros in this Z(t) real function : derived from a alternating serie ?

Download priem_staircase_en_riemann_functie.mw

Try to prove those two expressions : a sum and product 
First to know if they are correct defined for some values ?

Eulers productformule in Maple

 

 

Eerst de Euler identiteit in Maple opschrijven
via info over series

 

p-Series

sum(1/n^p, n = 1 .. infinity)

Absolute convergence for p > 1

Diverges for p <= 1 

 

 

restart;

sum(1/n^p, n = 1 .. infinity) = product(1/(1-p^(-s)), i = k .. p)

product(f,i=k..n);

product(1/(1 - p^(-s)), i = 1 .. p);

(1-p^(-s))*(-1/(-1+p^(-s)))^(p+1)

(1.1)

sum(1/n^p, n = 1 .. infinity);

sum(1/n^p, n = 1 .. infinity)

(1.2)

sum(1/n^p, n = 1 .. 4);

1+1/2^p+1/3^p+1/4^p

(1.3)

product(1/(1 - p^(-s)), i = 1 .. 4);
            

1/(1-p^(-s))^4

(1.4)

Product(1/(1 - p^(-s)), i = 1 .. 4)= product(1/(1 - p^(-s)), i = 1 .. 4);

Product(1/(1-p^(-s)), i = 1 .. 4) = 1/(1-p^(-s))^4

(1.5)

sum(1/n^p, n = 1 .. infinity) = product(1/(1 - p^(-s)), i = k .. p);

sum(1/n^p, n = 1 .. infinity) = (-1/(-1+p^(-s)))^(p+1)/(-1/(-1+p^(-s)))^k

(1.6)

 

 How to prove this sum(1/n^p, n = 1 .. infinity) = product(1/(1-p^(-s)), i = k .. p)

For the sum i got some terms , but for the product i don't see factors as i use the commands  

Download the_golden_key_in_Maple.mw

Some small differences is unavoidable ?

 

Its not symbolic that's why i don't get he same answers ?
Later on i will investigate some values for for this formula  

Riemanns formidabele formule

 

restart:

Volgens het boekje de riemanns hypothese : de functionaal vergelijking  (zonder bewijs)
Zeta(-z) = ((-2*factorial(z))*(1/(2*Pi)^(z+1)))*sin((1/2)*Pi*z)*Zeta(z+1)

Zeta(-z) = -2*factorial(z)*sin((1/2)*Pi*z)*Zeta(z+1)/(2*Pi)^(z+1)

(1.1)

Zeta(-z) = -2*z!*sin(Pi*z/2)*Zeta(z + 1)/(2*Pi)^(z + 1);

Zeta(-z) = -2*factorial(z)*sin((1/2)*Pi*z)*Zeta(z+1)/(2*Pi)^(z+1)

(1.2)

verg:=%;

Zeta(-z) = -2*factorial(z)*sin((1/2)*Pi*z)*Zeta(z+1)/(2*Pi)^(z+1)

(1.3)

verg2:= subs(z=2+3*I,verg);

Zeta(-2-3*I) = -2*factorial(2+3*I)*sin((1+(3/2)*I)*Pi)*Zeta(3+3*I)/(2*Pi)^(3+3*I)

(1.4)

verg3:= eval(verg,z=2.+3*I);

.1329711559-.1230533004*I = (2.450819690-44.87297744*I)/(2*Pi)^(3.+3.*I)

(1.5)

evalf(rhs(verg3));

.1329711558-.1230533005*I

(1.6)

lhs(verg3)=evalf(rhs(verg3));

.1329711559-.1230533004*I = .1329711558-.1230533005*I

(1.7)

lhs(verg3)- evalf(rhs(verg3));

0.1e-9+0.1e-9*I

(1.8)

 

Download post_naar_primes_over_triemanns_geweldige_formule.mw

Best wishes for all for the New Year 2022!

Is it possible to search for my questions who answered this on Maple Primes ?

Colored axes and showing 5 colored branches (Riemann surfaces) and ln(z)  as a spiral

There is a plotcompare(log(z), expression_plot, 3); branches(ln);

FunctionAdvisor(branch_cuts, log(z));
                         [ln(z), z < 0]

The principal branch is the red colored one : Pi..-Pi (difficult to see here )


                                       pic 1

Compare this pic 1  with the Imaginaire plot log(z) in plotcompare command.

2 3 4 5 6 7 8 Last Page 4 of 18