mehdi jafari

749 Reputation

13 Badges

12 years, 67 days

MaplePrimes Activity


These are answers submitted by mehdi jafari

what do u mean by finding relation between two expressions ? 

restart:

alias(z=x^2+y);

z

(1)

 f(x^2+y)=factor(x^4+y^2+2*y*x^2);

f(z) = z^2

(2)

``

 

Download alias.mw

as maple help page :

unapply(expr, x, y, .., options);

The result of unapply(expr, x) is a functional operator. Applying this operator to x gives the original expression.
"unapply(expr,x)(x)->expr"

In particular, for a function
f(x)
,
"unapply(f(x),x)->f"

for example :
p := x^2+sin(x)+1;
f := unapply(p, x);
f(Pi);

good luck !

 

 

 

 

as u can seen in the picture, i write Pi in two ways in maple 18


restart:

eq:=F+(1/4)*(4*(-Lambda)^(3/2)*h*m^2-2*sqrt(-Lambda)*exp(Lambda*h^2*m^2)*h*m+sqrt(Pi)*erf(h*m*sqrt(-Lambda)))/(m^2*(-Lambda)^(3/2)) = 0;

F+(1/4)*(4*(-Lambda)^(3/2)*h*m^2-2*(-Lambda)^(1/2)*exp(Lambda*h^2*m^2)*h*m+Pi^(1/2)*erf(h*m*(-Lambda)^(1/2)))/(m^2*(-Lambda)^(3/2)) = 0

(1)

solve({eq},{m});

Warning, solutions may have been lost

 

restart:h:=50;F:=100;Lambda:=500;

50

 

100

 

500

(2)

eq:=F+(1/4)*(4*(-Lambda)^(3/2)*h*m^2-2*sqrt(-Lambda)*exp(Lambda*h^2*m^2)*h*m+sqrt(Pi)*erf(h*m*sqrt(-Lambda)))/(m^2*(-Lambda)^(3/2)) = 0;

100+(1/1000000)*(-100000*(-500)^(1/2)*m^2-(1000*I)*5^(1/2)*exp(1250000*m^2)*m+Pi^(1/2)*erf((500*I)*m*5^(1/2)))*(-500)^(1/2)/m^2 = 0

(3)

fsolve({eq},{m});

{m = -1.000001378-.9999980370*I}

(4)

 


Download fsolve.mw

your boundary conditions do not seem natural ! in fact i replace infinity by h, and your answer does not converge for h>22.7 . u can see here : 

restart:Pr:=0.1:h:=22.7:

sys_ode := {diff(y(eta), eta$3)+3*y(eta)*(diff(y(eta), eta$2))-2*(diff(y(eta), eta))^2+x(eta) = 0, diff(x(eta), eta$2)+3*Pr*y(eta)*(diff(x(eta), eta)) = 0};

 

{diff(diff(x(eta), eta), eta)+.3*y(eta)*(diff(x(eta), eta)) = 0, diff(diff(diff(y(eta), eta), eta), eta)+3*y(eta)*(diff(diff(y(eta), eta), eta))-2*(diff(y(eta), eta))^2+x(eta) = 0}

(1)

ics := {y(0) = 0, (D(y))(0) = 0,  x(0) = 1,(D(y))(h) = 0,x(h) = 0};

{x(0) = 1, x(22.7) = 0, y(0) = 0, (D(y))(0) = 0, (D(y))(22.7) = 0}

(2)

ans:=dsolve(sys_ode union ics,numeric);

proc (x_bvp) local res, data, solnproc, _ndsol, outpoint, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](x_bvp) else outpoint := evalf(x_bvp) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(49, {(1) = .0, (2) = .458212174513499, (3) = .9167737747067968, (4) = 1.3760876525640229, (5) = 1.8366158756244553, (6) = 2.2988062068858515, (7) = 2.7629673257815828, (8) = 3.229204440029012, (9) = 3.6974349261307844, (10) = 4.167419556126934, (11) = 4.638854060258957, (12) = 5.111442207725901, (13) = 5.584926162867381, (14) = 6.0590965510998425, (15) = 6.533780268531017, (16) = 7.008837710661318, (17) = 7.484161496778053, (18) = 7.959671584953886, (19) = 8.4353118294204, (20) = 8.911043900175295, (21) = 9.38683730164883, (22) = 9.862662960828821, (23) = 10.33849402287488, (24) = 10.814312890201785, (25) = 11.29011132544577, (26) = 11.765886834657971, (27) = 12.241640028342417, (28) = 12.717373819359123, (29) = 13.193093993807263, (30) = 13.668810127227736, (31) = 14.144528650781407, (32) = 14.620251711770948, (33) = 15.09598069408134, (34) = 15.571719534623767, (35) = 16.047473075130963, (36) = 16.523245815518266, (37) = 16.9990416994126, (38) = 17.47486392692621, (39) = 17.95071500461907, (40) = 18.426596679086828, (41) = 18.902510101640456, (42) = 19.378456786824806, (43) = 19.85443968399819, (44) = 20.330461361828455, (45) = 20.806520858937585, (46) = 21.28261063320739, (47) = 21.758718307580434, (48) = 22.234536964854037, (49) = 22.7}, datatype = float[8], order = C_order); Y := Matrix(49, 5, {(1, 1) = 1.0, (1, 2) = -.21878774570898019, (1, 3) = .0, (1, 4) = .0, (1, 5) = .8632694861492813, (2, 1) = .899841946556256, (2, 2) = -.2179981611727428, (2, 3) = 0.7511724068383135e-1, (2, 4) = .295440108912029, (2, 5) = .43972649692170446, (3, 1) = .8007420576133968, (3, 2) = -.2133941236302593, (3, 3) = .24464222300436528, (3, 4) = .4198244255240502, (3, 5) = .12468554590553588, (4, 1) = .7047915133668265, (4, 2) = -.20352886698799955, (4, 3) = .44311350530692933, (4, 4) = .4305664251284397, (4, 5) = -0.5630497082574385e-1, (5, 1) = .6142709961469736, (5, 2) = -.1889128904869527, (5, 3) = .632103394651876, (5, 4) = .3846962335230535, (5, 5) = -.1287092120151755, (6, 1) = .5309956632087032, (6, 2) = -.17105384982259286, (6, 3) = .7953893679847128, (6, 4) = .32102971818516207, (6, 5) = -.14036157738021948, (7, 1) = .4560774727775238, (7, 2) = -.15164444530501323, (7, 3) = .9296011319316027, (7, 4) = .2582178135756259, (7, 5) = -.12837968372431618, (8, 1) = .3899483662272562, (8, 2) = -.13212171930491048, (8, 3) = 1.0366590558992277, (8, 4) = .2023812337025117, (8, 5) = -.11101250354902474, (9, 1) = .33249356077377484, (9, 2) = -.11352208125673006, (9, 3) = 1.1198718871973707, (9, 4) = .15434092700343777, (9, 5) = -0.9454025846867661e-1, (10, 1) = .28321403026127256, (10, 2) = -0.9649181869028849e-1, (10, 3) = 1.1825126523864786, (10, 4) = .11333399179163503, (10, 5) = -0.8036993850232915e-1, (11, 1) = .2413713442005222, (11, 2) = -0.8135655176933076e-1, (11, 3) = 1.2274719433937336, (11, 4) = 0.7833460660470526e-1, (11, 5) = -0.684687315528447e-1, (12, 1) = .20610937715448224, (12, 2) = -0.6820636963829335e-1, (12, 3) = 1.2572335819922738, (12, 4) = 0.4840120105477434e-1, (12, 5) = -0.5850764388027225e-1, (13, 1) = .17654736665003778, (13, 2) = -0.5697571866067909e-1, (13, 3) = 1.2739184531189782, (13, 4) = 0.2273486105608968e-1, (13, 5) = -0.5015138158830835e-1, (14, 1) = .15184216754276822, (14, 2) = -0.47508069879135854e-1, (14, 3) = 1.2793357750565073, (14, 4) = 0.6707968677364972e-3, (14, 5) = -0.4311220409966803e-1, (15, 1) = .13122489168791618, (15, 2) = -0.3960340707949415e-1, (15, 3) = 1.2750301584804826, (15, 4) = -0.18340522926530437e-1, (15, 5) = -0.37152102008574876e-1, (16, 1) = .11401718125826092, (16, 2) = -0.33049758892520924e-1, (16, 3) = 1.2623236399324729, (16, 4) = -0.3475244447665851e-1, (16, 5) = -0.32075993817165194e-1, (17, 1) = 0.9963460119242934e-1, (17, 2) = -0.27642499287503498e-1, (17, 3) = 1.2423515493483006, (17, 4) = -0.4893873262774852e-1, (17, 5) = -0.2772453377062424e-1, (18, 1) = 0.8758241160479836e-1, (18, 2) = -0.231949089693054e-1, (18, 3) = 1.2160929767151758, (18, 4) = -0.6120749241613176e-1, (18, 5) = -0.23967842617627872e-1, (19, 1) = 0.7744712898077563e-1, (19, 2) = -0.19542809969804228e-1, (19, 3) = 1.1843964810583951, (19, 4) = -0.7181286613690217e-1, (19, 5) = -0.2070016803283177e-1, (20, 1) = 0.6888641637462525e-1, (20, 2) = -0.1654553326148221e-1, (20, 3) = 1.1480018854638465, (20, 4) = -0.8096467628871358e-1, (20, 5) = -0.17835423028407314e-1, (21, 1) = 0.616187659304772e-1, (21, 2) = -0.14084775822564686e-1, (21, 3) = 1.1075590401944604, (21, 4) = -0.8883632719432005e-1, (21, 5) = -0.15303492267544547e-1, (22, 1) = 0.5541369485867765e-1, (22, 2) = -0.12062353126694993e-1, (22, 3) = 1.063643525121992, (22, 4) = -0.9557137593649861e-1, (22, 5) = -0.13047161286850866e-1, (23, 1) = 0.50082913120123744e-1, (23, 2) = -0.10397529091055388e-1, (23, 3) = 1.0167691458204657, (23, 4) = -.10128897557262613, (23, 5) = -0.11019576762951759e-1, (24, 1) = 0.45472684221878834e-1, (24, 2) = -0.902434067598738e-2, (24, 3) = .9673974794540176, (24, 4) = -.10608829940835386, (24, 5) = -0.9182168358601134e-2, (25, 1) = 0.414574829224438e-1, (25, 2) = -0.7889156510905826e-2, (25, 3) = .9159462065773858, (25, 4) = -.1100519788252721, (25, 5) = -0.750299842915878e-2, (26, 1) = 0.3793474189784892e-1, (26, 2) = -0.69485208196884765e-2, (26, 3) = .8627964926596254, (26, 4) = -.11324883159750969, (26, 5) = -0.5955433416580649e-2, (27, 1) = 0.34820508129871405e-1, (27, 2) = -0.616729522893043e-2, (27, 3) = .8082992203264956, (27, 4) = -.11573606515804993, (27, 5) = -0.4517055492988861e-2, (28, 1) = 0.3204588219244224e-1, (28, 2) = -0.5517094234438824e-2, (28, 3) = .7527801379127977, (28, 4) = -.11756104152733347, (28, 5) = -0.31687635150786293e-2, (29, 1) = 0.2955412297136552e-1, (29, 2) = -0.49749911947394665e-2, (29, 3) = .6965441250055056, (29, 4) = -.11876266293891678, (29, 5) = -0.18940229105797258e-2, (30, 1) = 0.2729830830864645e-1, (30, 2) = -0.4522461647089689e-2, (30, 3) = .6398788485489949, (30, 4) = -.11937242721739355, (30, 5) = -0.6782296826859605e-3, (31, 1) = 0.25239482241079598e-1, (31, 2) = -0.4144532906713013e-2, (31, 3) = .5830589374951933, (31, 4) = -.11941520036772107, (31, 5) = 0.491825894519223e-3, (32, 1) = 0.23345131794260444e-1, (32, 2) = -0.38290904792801627e-2, (32, 3) = .5263491610189406, (32, 4) = -.11890977731551816, (32, 5) = 0.16284630275914614e-2, (33, 1) = 0.21587944897181303e-1, (33, 2) = -0.3566318666013723e-2, (33, 3) = .4700068222843767, (33, 4) = -.11786920062716919, (33, 5) = 0.27436046249410414e-2, (34, 1) = 0.19944814205316578e-1, (34, 2) = -0.33482540218611246e-2, (34, 3) = .41428408479762113, (34, 4) = -.11630082264622878, (34, 5) = 0.38492823506775897e-2, (35, 1) = 0.18396050715987735e-1, (35, 2) = -0.3168430093682086e-2, (35, 3) = .3594309256102944, (35, 4) = -.11420612299794414, (35, 5) = 0.4958180550155179e-2, (36, 1) = 0.16924745927636424e-1, (36, 2) = -0.30215910795670115e-2, (36, 3) = .3056981873823737, (36, 4) = -.11158025250200247, (36, 5) = 0.6084278710038933e-2, (37, 1) = 0.15516252680113229e-1, (37, 2) = -0.29034602233055738e-2, (37, 3) = .25334079937403814, (37, 4) = -.10841123532152894, (37, 5) = 0.7243655107045357e-2, (38, 1) = 0.14157765455750808e-1, (38, 2) = -0.28105516548490874e-2, (38, 3) = .20262146981294887, (38, 4) = -.1046787349586972, (38, 5) = 0.8455534475893336e-2, (39, 1) = 0.12837981355949758e-1, (39, 2) = -0.27400157364841733e-2, (39, 3) = .15381506726630004, (39, 4) = -.10035223869051124, (39, 5) = 0.9743701334848191e-2, (40, 1) = 0.11546828867819076e-1, (40, 2) = -0.26895097141899794e-2, (40, 3) = .10721405465657648, (40, 4) = -0.9538844954929215e-1, (40, 5) = 0.11138452593600554e-1, (41, 1) = 0.10275253112145891e-1, (41, 2) = -0.26570865029174767e-2, (41, 3) = 0.6313538851879404e-1, (41, 4) = -0.8972756927619001e-1, (41, 5) = 0.1267934281611858e-1, (42, 1) = 0.9015048996030317e-2, (42, 2) = -0.26410953321029866e-2, (42, 3) = 0.2192947526473968e-1, (42, 4) = -0.8328800318952022e-1, (42, 5) = 0.1441908805236808e-1, (43, 1) = 0.77587397834030765e-2, (43, 2) = -0.26400884950853365e-2, (43, 3) = -0.16007826361442833e-1, (43, 4) = -0.7595882079354722e-1, (43, 5) = 0.1642914257427313e-1, (44, 1) = 0.6499507318517809e-2, (44, 2) = -0.26527281950332964e-2, (44, 3) = -0.5021865028911324e-1, (44, 4) = -0.6758906584630457e-1, (44, 5) = 0.1880763806684687e-1, (45, 1) = 0.52311714280238375e-2, (45, 2) = -0.2677686854912854e-2, (45, 3) = -0.801604482630397e-1, (45, 4) = -0.57972590768059044e-1, (45, 5) = 0.21690574269742073e-1, (46, 1) = 0.3948219969537997e-2, (46, 2) = -0.27135340592013596e-2, (46, 3) = -.10517484383504254, (46, 4) = -0.4682663479273674e-1, (46, 5) = 0.25267238835017292e-1, (47, 1) = 0.26458851667142233e-2, (47, 2) = -0.275860302740422e-2, (47, 3) = -.12444476013373522, (47, 4) = -0.3376183507627973e-1, (47, 5) = 0.2980060651368868e-1, (48, 1) = 0.1321109427901999e-2, (48, 2) = -0.28107943525948575e-2, (48, 3) = -.1369294623841488, (48, 4) = -0.18251796186653336e-1, (48, 5) = 0.3564819503875055e-1, (49, 1) = .0, (49, 2) = -0.2866215606728736e-2, (49, 3) = -.1413117416534144, (49, 4) = .0, (49, 5) = 0.43108186101757026e-1}, datatype = float[8], order = C_order); YP := Matrix(49, 5, {(1, 1) = -.21878774570898019, (1, 2) = .0, (1, 3) = .0, (1, 4) = .8632694861492813, (1, 5) = -1.0, (2, 1) = -.2179981611727428, (2, 2) = 0.4912626102433673e-2, (2, 3) = .295440108912029, (2, 4) = .43972649692170446, (2, 5) = -.82436535396133, (3, 1) = -.2133941236302593, (3, 2) = 0.15661563834292496e-1, (3, 3) = .4198244255240502, (3, 4) = .12468554590553588, (3, 5) = -.5397470084607287, (4, 1) = -.20352886698799955, (4, 2) = 0.27055916904660072e-1, (4, 3) = .4305664251284397, (4, 4) = -0.5630497082574385e-1, (4, 5) = -.25916814150465883, (5, 1) = -.1889128904869527, (5, 2) = 0.3582374381109027e-1, (5, 3) = .3846962335230535, (5, 4) = -.1287092120151755, (5, 5) = -0.7421602246004477e-1, (6, 1) = -.17105384982259286, (6, 2) = 0.4081632405052324e-1, (6, 3) = .32102971818516207, (6, 4) = -.14036157738021948, (6, 5) = 0.10050815672756341e-1, (7, 1) = -.15164444530501323, (7, 2) = 0.4229065440200409e-1, (7, 3) = .2582178135756259, (7, 4) = -.12837968372431618, (7, 5) = 0.35301103639466036e-1, (8, 1) = -.13212171930491048, (8, 2) = 0.4108955303952338e-1, (8, 3) = .2023812337025117, (8, 4) = -.11101250354902474, (8, 5) = 0.372143126490701e-1, (9, 1) = -.11352208125673006, (9, 2) = 0.3813905621266427e-1, (9, 3) = .15434092700343777, (9, 4) = -0.9454025846867661e-1, (9, 5) = 0.3276761572511844e-1, (10, 1) = -0.9649181869028849e-1, (10, 2) = 0.3423083893591447e-1, (10, 3) = .11333399179163503, (10, 4) = -0.8036993850232915e-1, (10, 5) = 0.2759056458116249e-1, (11, 1) = -0.8135655176933076e-1, (11, 2) = 0.29958865412433998e-1, (11, 3) = 0.7833460660470526e-1, (11, 4) = -0.684687315528447e-1, (11, 5) = 0.23031617925928116e-1, (12, 1) = -0.6820636963829335e-1, (12, 2) = 0.25725401524512182e-1, (12, 3) = 0.4840120105477434e-1, (12, 4) = -0.5850764388027225e-1, (12, 5) = 0.19249299441176176e-1, (13, 1) = -0.5697571866067909e-1, (13, 2) = 0.21774725814466322e-1, (13, 3) = 0.2273486105608968e-1, (13, 4) = -0.5015138158830835e-1, (13, 5) = 0.16152692528713763e-1, (14, 1) = -0.47508069879135854e-1, (14, 2) = 0.18233632020078893e-1, (14, 3) = 0.6707968677364972e-3, (14, 4) = -0.4311220409966803e-1, (14, 5) = 0.13623687532836687e-1, (15, 1) = -0.3960340707949415e-1, (15, 2) = 0.15148661521480346e-1, (15, 3) = -0.18340522926530437e-1, (15, 4) = -0.37152102008574876e-1, (15, 5) = 0.11558009410149839e-1, (16, 1) = -0.33049758892520924e-1, (16, 2) = 0.12515847583229286e-1, (16, 3) = -0.3475244447665851e-1, (16, 4) = -0.32075993817165194e-1, (16, 5) = 0.9869139345151934e-2, (17, 1) = -0.27642499287503498e-1, (17, 2) = 0.1030251054530678e-1, (17, 3) = -0.4893873262774852e-1, (17, 4) = -0.2772453377062424e-1, (17, 5) = 0.8486250364674111e-2, (18, 1) = -0.231949089693054e-1, (18, 2) = 0.846214976793604e-2, (18, 3) = -0.6120749241613176e-1, (18, 4) = -0.23967842617627872e-1, (18, 5) = 0.7351677873879095e-2, (19, 1) = -0.19542809969804228e-1, (19, 2) = 0.6943930607468714e-2, (19, 3) = -0.7181286613690217e-1, (19, 4) = -0.2070016803283177e-1, (19, 5) = 0.641866503102792e-2, (20, 1) = -0.1654553326148221e-1, (20, 2) = 0.5698291014055909e-2, (20, 3) = -0.8096467628871358e-1, (20, 4) = -0.17835423028407314e-1, (20, 5) = 0.56494390324178245e-2, (21, 1) = -0.14084775822564686e-1, (21, 2) = 0.4679916237418165e-2, (21, 3) = -0.8883632719432005e-1, (21, 4) = -0.15303492267544547e-1, (21, 5) = 0.50135837506703335e-2, (22, 1) = -0.12062353126694993e-1, (22, 2) = 0.3849013140283243e-2, (22, 3) = -0.9557137593649861e-1, (22, 4) = -0.13047161286850866e-1, (22, 5) = 0.44866668100571605e-2, (23, 1) = -0.10397529091055388e-1, (23, 2) = 0.3171566031766749e-2, (23, 3) = -.10128897557262613, (23, 4) = -0.11019576762951759e-1, (23, 5) = 0.40490969826888976e-2, (24, 1) = -0.902434067598738e-2, (24, 2) = 0.26190373271053665e-2, (24, 3) = -.10608829940835386, (24, 4) = -0.9182168358601134e-2, (24, 5) = 0.36851898989337453e-2, (25, 1) = -0.7889156510905826e-2, (25, 2) = 0.2167812893777843e-2, (25, 3) = -.1100519788252721, (25, 4) = -0.750299842915878e-2, (25, 5) = 0.3382422011704682e-2, (26, 1) = -0.69485208196884765e-2, (26, 2) = 0.1798547817719881e-2, (26, 3) = -.11324883159750969, (26, 4) = -0.5955433416580649e-2, (26, 5) = 0.3130835010834436e-2, (27, 1) = -0.616729522893043e-2, (27, 2) = 0.1495505977520335e-2, (27, 3) = -.11573606515804993, (27, 4) = -0.4517055492988861e-2, (27, 5) = 0.29225627261285914e-2, (28, 1) = -0.5517094234438824e-2, (28, 2) = 0.12459476876036278e-2, (28, 3) = -.11756104152733347, (28, 4) = -0.31687635150786293e-2, (28, 5) = 0.27514614852224076e-2, (29, 1) = -0.49749911947394665e-2, (29, 2) = 0.1039590266594969e-2, (29, 3) = -.11876266293891678, (29, 4) = -0.18940229105797258e-2, (29, 5) = 0.26128288382904034e-2, (30, 1) = -0.4522461647089689e-2, (30, 2) = 0.8681482654040224e-3, (30, 3) = -.11937242721739355, (30, 4) = -0.6782296826859605e-3, (30, 5) = 0.25031989361239196e-2, (31, 1) = -0.4144532906713013e-2, (31, 2) = 0.7249520859005864e-3, (31, 3) = -.11941520036772107, (31, 4) = 0.491825894519223e-3, (31, 5) = 0.24202074661733436e-2, (32, 1) = -0.38290904792801627e-2, (32, 2) = 0.604631568370418e-3, (32, 3) = -.11890977731551816, (32, 4) = 0.16284630275914614e-2, (32, 5) = 0.23625180432224023e-2, (33, 1) = -0.3566318666013723e-2, (33, 2) = 0.5028582310399702e-3, (33, 3) = -.11786920062716919, (33, 4) = 0.27436046249410414e-2, (33, 5) = 0.23298133416746435e-2, (34, 1) = -0.33482540218611246e-2, (34, 2) = 0.4161385059350071e-3, (34, 3) = -.11630082264622878, (34, 4) = 0.38492823506775897e-2, (34, 5) = 0.2322859243728239e-2, (35, 1) = -0.3168430093682086e-2, (35, 2) = 0.3416495283910991e-3, (35, 3) = -.11420612299794414, (35, 4) = 0.4958180550155179e-2, (35, 5) = 0.23436560709996536e-2, (36, 1) = -0.30215910795670115e-2, (36, 2) = 0.27710847481031555e-3, (36, 3) = -.11158025250200247, (36, 4) = 0.6084278710038933e-2, (36, 5) = 0.23957006496206287e-2, (37, 1) = -0.29034602233055738e-2, (37, 2) = 0.2206694801768872e-3, (37, 3) = -.10841123532152894, (37, 4) = 0.7243655107045357e-2, (37, 5) = 0.24843990821405027e-2, (38, 1) = -0.28105516548490874e-2, (38, 2) = 0.17084343218722134e-3, (38, 3) = -.1046787349586972, (38, 4) = 0.8455534475893336e-2, (38, 5) = 0.26176911786768356e-2, (39, 1) = -0.27400157364841733e-2, (39, 2) = 0.1264367114454101e-3, (39, 3) = -.10035223869051124, (39, 4) = 0.9743701334848191e-2, (39, 5) = 0.2806978035717691e-2, (40, 1) = -0.26895097141899794e-2, (40, 2) = 0.8650597244896734e-4, (40, 3) = -0.9538844954929215e-1, (40, 4) = 0.11138452593600554e-1, (40, 5) = 0.3068487751536708e-2, (41, 1) = -0.26570865029174767e-2, (41, 2) = 0.503268566069216e-4, (41, 3) = -0.8972756927619001e-1, (41, 4) = 0.1267934281611858e-1, (41, 5) = 0.34252745597051822e-2, (42, 1) = -0.26410953321029866e-2, (42, 2) = 0.1737535042715156e-4, (42, 3) = -0.8328800318952022e-1, (42, 4) = 0.1441908805236808e-1, (42, 5) = 0.3910124850211217e-2, (43, 1) = -0.26400884950853365e-2, (43, 2) = -0.12678623462450696e-4, (43, 3) = -0.7595882079354722e-1, (43, 4) = 0.1642914257427313e-1, (43, 5) = 0.45697297140784255e-2, (44, 1) = -0.26527281950332964e-2, (44, 2) = -0.39964928861534305e-4, (44, 3) = -0.6758906584630457e-1, (44, 4) = 0.1880763806684687e-1, (44, 5) = 0.5470538921963971e-2, (45, 1) = -0.2677686854912854e-2, (45, 2) = -0.64393373579359e-4, (45, 3) = -0.57972590768059044e-1, (45, 4) = 0.21690574269742073e-1, (45, 5) = 0.6706649602333689e-2, (46, 1) = -0.27135340592013596e-2, (46, 2) = -0.8561865627527161e-4, (46, 3) = -0.4682663479273674e-1, (46, 4) = 0.25267238835017292e-1, (46, 5) = 0.8409681178333687e-2, (47, 1) = -0.275860302740422e-2, (47, 2) = -0.1029881076148542e-3, (47, 3) = -0.3376183507627973e-1, (47, 4) = 0.2980060651368868e-1, (47, 5) = 0.10759425837029046e-1, (48, 1) = -0.28107943525948575e-2, (48, 2) = -0.11546416787196462e-3, (48, 3) = -0.18251796186653336e-1, (48, 4) = 0.3564819503875055e-1, (48, 5) = 0.13989011245040449e-1, (49, 1) = -0.2866215606728736e-2, (49, 2) = -0.12150897580231066e-3, (49, 3) = .0, (49, 4) = 0.43108186101757026e-1, (49, 5) = 0.18275078572676393e-1}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(49, {(1) = .0, (2) = .458212174513499, (3) = .9167737747067968, (4) = 1.3760876525640229, (5) = 1.8366158756244553, (6) = 2.2988062068858515, (7) = 2.7629673257815828, (8) = 3.229204440029012, (9) = 3.6974349261307844, (10) = 4.167419556126934, (11) = 4.638854060258957, (12) = 5.111442207725901, (13) = 5.584926162867381, (14) = 6.0590965510998425, (15) = 6.533780268531017, (16) = 7.008837710661318, (17) = 7.484161496778053, (18) = 7.959671584953886, (19) = 8.4353118294204, (20) = 8.911043900175295, (21) = 9.38683730164883, (22) = 9.862662960828821, (23) = 10.33849402287488, (24) = 10.814312890201785, (25) = 11.29011132544577, (26) = 11.765886834657971, (27) = 12.241640028342417, (28) = 12.717373819359123, (29) = 13.193093993807263, (30) = 13.668810127227736, (31) = 14.144528650781407, (32) = 14.620251711770948, (33) = 15.09598069408134, (34) = 15.571719534623767, (35) = 16.047473075130963, (36) = 16.523245815518266, (37) = 16.9990416994126, (38) = 17.47486392692621, (39) = 17.95071500461907, (40) = 18.426596679086828, (41) = 18.902510101640456, (42) = 19.378456786824806, (43) = 19.85443968399819, (44) = 20.330461361828455, (45) = 20.806520858937585, (46) = 21.28261063320739, (47) = 21.758718307580434, (48) = 22.234536964854037, (49) = 22.7}, datatype = float[8], order = C_order); Y := Matrix(49, 5, {(1, 1) = .0, (1, 2) = -0.4714747559394966e-9, (1, 3) = .0, (1, 4) = .0, (1, 5) = 0.971788169947384e-8, (2, 1) = -0.3504243118491768e-9, (2, 2) = -0.38471175550152283e-9, (2, 3) = 0.2584678373888547e-8, (2, 4) = 0.16013071301344158e-8, (2, 5) = 0.17176548406280354e-8, (3, 1) = -0.5067845666977043e-9, (3, 2) = -0.15928748100627906e-9, (3, 3) = 0.26116045986293995e-8, (3, 4) = 0.7232898150258619e-9, (3, 5) = -0.17685183171423437e-8, (4, 1) = -0.4935489637057562e-9, (4, 2) = -0.6603846410533251e-10, (4, 3) = 0.28078157314575945e-8, (4, 4) = -0.629424073292084e-9, (4, 5) = -0.7989246918984832e-9, (5, 1) = -0.4808363110091255e-9, (5, 2) = -0.10338531452404034e-11, (5, 3) = 0.2815442573966547e-8, (5, 4) = -0.2091371126955488e-8, (5, 5) = 0.3229098114143378e-8, (6, 1) = -0.46182036118330235e-9, (6, 2) = 0.6334095562261781e-10, (6, 3) = 0.15773549989466058e-8, (6, 4) = -0.8411812381931531e-10, (6, 5) = -0.9098402536328649e-9, (7, 1) = -0.4183541489331752e-9, (7, 2) = 0.7766670859972695e-10, (7, 3) = 0.13564198693638828e-8, (7, 4) = 0.19270462940726627e-9, (7, 5) = -0.1994008598722109e-8, (8, 1) = -0.37267760699585145e-9, (8, 2) = 0.7866610494126479e-10, (8, 3) = 0.15061408991958206e-8, (8, 4) = -0.7576007446128072e-9, (8, 5) = 0.8804840672441604e-9, (9, 1) = -0.33078068706796153e-9, (9, 2) = 0.8123736859355684e-10, (9, 3) = 0.12776277827982868e-8, (9, 4) = -0.6825480788843473e-9, (9, 5) = 0.9050441721960494e-9, (10, 1) = -0.2908731395518139e-9, (10, 2) = 0.7953102164980149e-10, (10, 3) = 0.999257575418511e-9, (10, 4) = -0.3597410451553362e-9, (10, 5) = 0.15050697653297668e-10, (11, 1) = -0.25359622755542025e-9, (11, 2) = 0.7364262953454995e-10, (11, 3) = 0.8203968710584914e-9, (11, 4) = -0.2797053645029227e-9, (11, 5) = -0.11245173381137781e-9, (12, 1) = -0.22004443511652323e-9, (12, 2) = 0.660660217217648e-10, (12, 3) = 0.6844294694285173e-9, (12, 4) = -0.27993102494416893e-9, (12, 5) = 0.22042522585581232e-10, (13, 1) = -0.19056723255407127e-9, (13, 2) = 0.5818872001457427e-10, (13, 3) = 0.5598630392106094e-9, (13, 4) = -0.26287921923113047e-9, (13, 5) = 0.7777117352392892e-10, (14, 1) = -0.16502891031424845e-9, (14, 2) = 0.50616996201637126e-10, (14, 3) = 0.4459614046323928e-9, (14, 4) = -0.2335514100416284e-9, (14, 5) = 0.7447807132416402e-10, (15, 1) = -0.1430928917030109e-9, (15, 2) = 0.4364673696144822e-10, (15, 3) = 0.3445998596902292e-9, (15, 4) = -0.20463718043113031e-9, (15, 5) = 0.6134764199223329e-10, (16, 1) = -0.12435057199384286e-9, (16, 2) = 0.3741216924901312e-10, (16, 3) = 0.2553278704263491e-9, (16, 4) = -0.17923574467734893e-9, (16, 5) = 0.5169853629772907e-10, (17, 1) = -0.10838606671949897e-9, (17, 2) = 0.3194607816063436e-10, (17, 3) = 0.17695188712443123e-9, (17, 4) = -0.15691952596637052e-9, (17, 5) = 0.4529551329113826e-10, (18, 1) = -0.9480691768787522e-10, (18, 2) = 0.2722139236484889e-10, (18, 3) = 0.10834091791586737e-9, (18, 4) = -0.13697273816661207e-9, (18, 5) = 0.40594611041668834e-10, (19, 1) = -0.832589573893636e-10, (19, 2) = 0.23179373997925504e-10, (19, 3) = 0.4857002348479039e-10, (19, 4) = -0.1189266227510918e-9, (19, 5) = 0.3678650213416136e-10, (20, 1) = -0.7343024861628174e-10, (20, 2) = 0.19747306865701094e-10, (20, 3) = -0.31536872741499198e-11, (20, 4) = -0.10248403827906708e-9, (20, 5) = 0.3353661990425386e-10, (21, 1) = -0.6505072899233232e-10, (21, 2) = 0.16849119431108645e-10, (21, 3) = -0.47511863709006406e-10, (21, 4) = -0.8743566396910578e-10, (21, 5) = 0.306954024906713e-10, (22, 1) = -0.57889254835302475e-10, (22, 2) = 0.14411378400382475e-10, (22, 3) = -0.8510021301036629e-10, (22, 4) = -0.7361928816724024e-10, (22, 5) = 0.28176819587597748e-10, (23, 1) = -0.5174930992613982e-10, (23, 2) = 0.12366416409183198e-10, (23, 3) = -0.11645657397881674e-9, (23, 4) = -0.6090495165563689e-10, (23, 5) = 0.25919778582113096e-10, (24, 1) = -0.4646517504326505e-10, (24, 2) = 0.10653854110451114e-10, (24, 3) = -0.14206253881105928e-9, (24, 4) = -0.4918530113906235e-10, (24, 5) = 0.23876714216019046e-10, (25, 1) = -0.4189711973568216e-10, (25, 2) = 0.9220967182309952e-11, (25, 3) = -0.1623600274937571e-9, (25, 4) = -0.3837286141499988e-10, (25, 5) = 0.2201015408733165e-10, (26, 1) = -0.3792826249483804e-10, (26, 2) = 0.8022492377541999e-11, (26, 3) = -0.17775449821265964e-9, (26, 4) = -0.28394946886411947e-10, (26, 5) = 0.2028917087062814e-10, (27, 1) = -0.34460692384219e-10, (27, 2) = 0.70200080986685036e-11, (27, 3) = -0.18862053727786182e-9, (27, 4) = -0.19191713702787596e-10, (27, 5) = 0.18687767476645883e-10, (28, 1) = -0.3141270665030391e-10, (28, 2) = 0.61812609952805356e-11, (28, 3) = -0.19530926579039957e-9, (28, 4) = -0.10714235049265321e-10, (28, 5) = 0.17183799369315533e-10, (29, 1) = -0.2871610615836378e-10, (29, 2) = 0.54793053781944655e-11, (29, 3) = -0.19814978961725785e-9, (29, 4) = -0.2922686148414614e-11, (29, 5) = 0.1575840887788341e-10, (30, 1) = -0.26313673143144815e-10, (30, 2) = 0.48918088417862485e-11, (30, 3) = -0.19745782464656794e-9, (30, 4) = 0.4215239544645954e-11, (30, 5) = 0.14395243240450764e-10, (31, 1) = -0.24157644214289094e-10, (31, 2) = 0.4400298688792531e-11, (31, 3) = -0.19353407721566814e-9, (31, 4) = 0.1072447222203261e-10, (31, 5) = 0.13079923691104816e-10, (32, 1) = -0.22207708700552714e-10, (32, 2) = 0.3989573101010944e-11, (32, 3) = -0.18666744265227534e-9, (32, 4) = 0.1662388113633889e-10, (32, 5) = 0.11799345250361238e-10, (33, 1) = -0.20430011731662426e-10, (33, 2) = 0.3647151019615685e-11, (33, 3) = -0.17714318936291262e-9, (33, 4) = 0.21926736797800416e-10, (33, 5) = 0.10541219059522247e-10, (34, 1) = -0.18795723095286168e-10, (34, 2) = 0.3362805797696511e-11, (34, 3) = -0.16523989427653679e-9, (34, 4) = 0.26640813720668e-10, (34, 5) = 0.9293493390671306e-11, (35, 1) = -0.17280155751717552e-10, (35, 2) = 0.3128199503588614e-11, (35, 3) = -0.15123219599171876e-9, (35, 4) = 0.3076839953221217e-10, (35, 5) = 0.8043776810586469e-11, (36, 1) = -0.15862243622479622e-10, (36, 2) = 0.29365438204476665e-11, (36, 3) = -0.13539636511230446e-9, (36, 4) = 0.3430631425338145e-10, (36, 5) = 0.6778575329561841e-11, (37, 1) = -0.1452344185209412e-10, (37, 2) = 0.27823578457668643e-11, (37, 3) = -0.11801179494079175e-9, (37, 4) = 0.37244802353606954e-10, (37, 5) = 0.5482389524138102e-11, (38, 1) = -0.13247640510949969e-10, (38, 2) = 0.26612131964248583e-11, (38, 3) = -0.9936161330254367e-10, (38, 4) = 0.3956737499156065e-10, (38, 5) = 0.4136414751369034e-11, (39, 1) = -0.12020412641864357e-10, (39, 2) = 0.25695932797671546e-11, (39, 3) = -0.7973882535058717e-10, (39, 4) = 0.41248462100319363e-10, (39, 5) = 0.27168823163267776e-11, (40, 1) = -0.10828815059022216e-10, (40, 2) = 0.25046929414820325e-11, (40, 3) = -0.5944894381058415e-10, (40, 4) = 0.4225138152311598e-10, (40, 5) = 0.11923419317116613e-11, (41, 1) = -0.9660983377241808e-11, (41, 2) = 0.2464319446187923e-11, (41, 3) = -0.3881580677721303e-10, (41, 4) = 0.4252485611919993e-10, (41, 5) = -0.4800522848586927e-12, (42, 1) = -0.85058773085258e-11, (42, 2) = 0.24467552527184984e-11, (42, 3) = -0.1818790691940029e-10, (42, 4) = 0.4199756585163284e-10, (42, 5) = -0.2360399223512835e-11, (43, 1) = -0.7353203366304055e-11, (43, 2) = 0.24506330284084867e-11, (43, 3) = 0.2052774421408558e-11, (43, 4) = 0.40570787244348355e-10, (43, 5) = -0.4535129462775864e-11, (44, 1) = -0.619312647120455e-11, (44, 2) = 0.24748282188438978e-11, (44, 3) = 0.21479084916900452e-10, (44, 4) = 0.3810626628071714e-10, (44, 5) = -0.71307631326424234e-11, (45, 1) = -0.5016254115017788e-11, (45, 2) = 0.2518322899074201e-11, (45, 3) = 0.39604068400137984e-10, (45, 4) = 0.3441040173719694e-10, (45, 5) = -0.10335214566152713e-10, (46, 1) = -0.3813638793181693e-11, (46, 2) = 0.25800569623301688e-11, (46, 3) = 0.5586175655605739e-10, (46, 4) = 0.29209772878220157e-10, (46, 5) = -0.14429655337702185e-10, (47, 1) = -0.2576775266113491e-11, (47, 2) = 0.26587189471704195e-11, (47, 3) = 0.6958468286961272e-10, (47, 4) = 0.22118075942883193e-10, (47, 5) = -0.1983597139504265e-10, (48, 1) = -0.12985505090459361e-11, (48, 2) = 0.27525013086801657e-11, (48, 3) = 0.7997130937523969e-10, (48, 4) = 0.12589966703309495e-10, (48, 5) = -0.27185809802017952e-10, (49, 1) = .0, (49, 2) = 0.2856398488147974e-11, (49, 3) = 0.8588136332779905e-10, (49, 4) = .0, (49, 5) = -0.37309012061936806e-10}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[49] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(9.71788169947384e-9) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [5, 49, [x(eta), diff(x(eta), eta), y(eta), diff(y(eta), eta), diff(diff(y(eta), eta), eta)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[49] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[49] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(5, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(49, 5, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(5, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(49, 5, X, Y, outpoint, yout, L, V) end if; [eta = outpoint, seq('[x(eta), diff(x(eta), eta), y(eta), diff(y(eta), eta), diff(diff(y(eta), eta), eta)]'[i] = yout[i], i = 1 .. 5)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[49] elif outpoint = "order" then return 8 elif outpoint = "error" then return HFloat(9.71788169947384e-9) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [5, 49, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[49] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[49] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(5, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(49, 5, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(5, {(1) = 0., (2) = 0., (3) = 0., (4) = 0., (5) = 0.}); `dsolve/numeric/hermite`(49, 5, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 5)] end proc, (2) = Array(0..0, {}), (3) = [eta, x(eta), diff(x(eta), eta), y(eta), diff(y(eta), eta), diff(diff(y(eta), eta), eta)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(x_bvp) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(x_bvp) else _ndsol := pointto(data[2][0]); return ('_ndsol')(x_bvp) end if end if; try res := solnproc(outpoint); [eta = res[1], seq('[x(eta), diff(x(eta), eta), y(eta), diff(y(eta), eta), diff(diff(y(eta), eta), eta)]'[i] = res[i+1], i = 1 .. 5)] catch: error  end try end proc

(3)

 

plots:-odeplot(ans,[x(eta),y(eta)],eta=0..h);

 

plots:-odeplot(ans,[eta,x(eta)],eta=0..h);

 

plots:-odeplot(ans,[eta,y(eta)],eta=0..h);

 

NULL

Download ode_system.mw

how do you want to plot your matrix data ? also you have not defined c, i gave it value 0.5; you have a matrixoutput like this ; but what do u exactly want to plot ? specify your plot features please.

restart:

f:=(x,y)->x*(x-1)*y*(y-1);

g:=(x,y)->0;

analytical_sol:=proc(dx,dy,dt,Tf)

local Ft, Fx,Fy,x,y, c1,c2,c,j,k,i,u;

Ft := floor(Tf/dt)+1;c:=5/10;

Fx := floor(1/dx)+1;

Fy := floor(1/dy)+1;

x:=[seq(0..1,dx)]:

y:=[seq(0..1,dy)]:

c1 := (c*dt/dx)^2;

c2 := (c*dt/dy)^2;

#Initial position

for j from  1 to Fx do  

   for k from 1 to Fy do

  u[j,k,1] := f(-dx + j*dx, -dy + k*dy) -dt*g(-dx+j*dx, -dy + k*dy);

   u[j,k,2] := f(-dx + j*dx, -dy +k*dy);

end do;

end do;

 

# Boundary values j=1

for i from  1 to Ft +1 do

      for k from 1 to Fy do

         u[1,k,i] := 0;

      end do;

      for k from 1 to Fy do

         u[Fx,k,i] := 0;

      end do;

 

     for j from 1 to Fx do

         u[j,1,i] := 0;

      end do;

   

   for j from 1 to Fx do

         u[j,Fy,i] := 0;

      end do;

end do;

 

for i from 3 to Ft + 1 do

  for j from 2 to Fx-1 do

    for k from 2 to Fy-1 do

u[j, k, i] := 2*u[j,k,i-1] - u[j,k,i-2] + c1*(u[j+1,k,i-1]-2*u[j,k,i-1]+u[j-1,k,i-1]) + c2*(u[j,k+1,i-1] - 2*u[j, k, i-1] + u[j,k-1, i-1]);

end do;

end do;

end do;

return Matrix([seq([seq([seq(u[i,j,k],i=1..Fx)],j=1..Fy)],k=1..Ft)]):

end proc:

 

proc (x, y) options operator, arrow; x*(x-1)*y*(y-1) end proc

 

proc (x, y) options operator, arrow; 0 end proc

(1)

f:=(x, y) -> x *(x - 1)* y* (y - 1);

g:=(x, y) -> 0;

M:=analytical_sol(1/10,1/10,1/10,2);

f := proc (x, y) options operator, arrow; x*(x-1)*y*(y-1) end proc

 

g := proc (x, y) options operator, arrow; 0 end proc

 

M := Vector(4, {(1) = ` 21 x 11 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(2)

M(1..10,1..10);

Matrix(10, 10, {(1, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (1, 2) = [0, 81/10000, 9/625, 189/10000, 27/1250, 9/400, 27/1250, 189/10000, 9/625, 81/10000, 0], (1, 3) = [0, 9/625, 16/625, 21/625, 24/625, 1/25, 24/625, 21/625, 16/625, 9/625, 0], (1, 4) = [0, 189/10000, 21/625, 441/10000, 63/1250, 21/400, 63/1250, 441/10000, 21/625, 189/10000, 0], (1, 5) = [0, 27/1250, 24/625, 63/1250, 36/625, 3/50, 36/625, 63/1250, 24/625, 27/1250, 0], (1, 6) = [0, 9/400, 1/25, 21/400, 3/50, 1/16, 3/50, 21/400, 1/25, 9/400, 0], (1, 7) = [0, 27/1250, 24/625, 63/1250, 36/625, 3/50, 36/625, 63/1250, 24/625, 27/1250, 0], (1, 8) = [0, 189/10000, 21/625, 441/10000, 63/1250, 21/400, 63/1250, 441/10000, 21/625, 189/10000, 0], (1, 9) = [0, 9/625, 16/625, 21/625, 24/625, 1/25, 24/625, 21/625, 16/625, 9/625, 0], (1, 10) = [0, 81/10000, 9/625, 189/10000, 27/1250, 9/400, 27/1250, 189/10000, 9/625, 81/10000, 0], (2, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (2, 2) = [0, 81/10000, 9/625, 189/10000, 27/1250, 9/400, 27/1250, 189/10000, 9/625, 81/10000, 0], (2, 3) = [0, 9/625, 16/625, 21/625, 24/625, 1/25, 24/625, 21/625, 16/625, 9/625, 0], (2, 4) = [0, 189/10000, 21/625, 441/10000, 63/1250, 21/400, 63/1250, 441/10000, 21/625, 189/10000, 0], (2, 5) = [0, 27/1250, 24/625, 63/1250, 36/625, 3/50, 36/625, 63/1250, 24/625, 27/1250, 0], (2, 6) = [0, 9/400, 1/25, 21/400, 3/50, 1/16, 3/50, 21/400, 1/25, 9/400, 0], (2, 7) = [0, 27/1250, 24/625, 63/1250, 36/625, 3/50, 36/625, 63/1250, 24/625, 27/1250, 0], (2, 8) = [0, 189/10000, 21/625, 441/10000, 63/1250, 21/400, 63/1250, 441/10000, 21/625, 189/10000, 0], (2, 9) = [0, 9/625, 16/625, 21/625, 24/625, 1/25, 24/625, 21/625, 16/625, 9/625, 0], (2, 10) = [0, 81/10000, 9/625, 189/10000, 27/1250, 9/400, 27/1250, 189/10000, 9/625, 81/10000, 0], (3, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (3, 2) = [0, 9/1250, 263/20000, 87/5000, 399/20000, 13/625, 399/20000, 87/5000, 263/20000, 9/1250, 0], (3, 3) = [0, 263/20000, 3/125, 127/4000, 91/2500, 759/20000, 91/2500, 127/4000, 3/125, 263/20000, 0], (3, 4) = [0, 87/5000, 127/4000, 21/500, 963/20000, 251/5000, 963/20000, 21/500, 127/4000, 87/5000, 0], (3, 5) = [0, 399/20000, 91/2500, 963/20000, 69/1250, 1151/20000, 69/1250, 963/20000, 91/2500, 399/20000, 0], (3, 6) = [0, 13/625, 759/20000, 251/5000, 1151/20000, 3/50, 1151/20000, 251/5000, 759/20000, 13/625, 0], (3, 7) = [0, 399/20000, 91/2500, 963/20000, 69/1250, 1151/20000, 69/1250, 963/20000, 91/2500, 399/20000, 0], (3, 8) = [0, 87/5000, 127/4000, 21/500, 963/20000, 251/5000, 963/20000, 21/500, 127/4000, 87/5000, 0], (3, 9) = [0, 263/20000, 3/125, 127/4000, 91/2500, 759/20000, 91/2500, 127/4000, 3/125, 263/20000, 0], (3, 10) = [0, 9/1250, 263/20000, 87/5000, 399/20000, 13/625, 399/20000, 87/5000, 263/20000, 9/1250, 0], (4, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (4, 2) = [0, 227/40000, 109/10000, 1177/80000, 17/1000, 1421/80000, 17/1000, 1177/80000, 109/10000, 227/40000, 0], (4, 3) = [0, 109/10000, 417/20000, 281/10000, 649/20000, 339/10000, 649/20000, 281/10000, 417/20000, 109/10000, 0], (4, 4) = [0, 1177/80000, 281/10000, 757/20000, 437/10000, 913/20000, 437/10000, 757/20000, 281/10000, 1177/80000, 0], (4, 5) = [0, 17/1000, 649/20000, 437/10000, 1009/20000, 527/10000, 1009/20000, 437/10000, 649/20000, 17/1000, 0], (4, 6) = [0, 1421/80000, 339/10000, 913/20000, 527/10000, 1101/20000, 527/10000, 913/20000, 339/10000, 1421/80000, 0], (4, 7) = [0, 17/1000, 649/20000, 437/10000, 1009/20000, 527/10000, 1009/20000, 437/10000, 649/20000, 17/1000, 0], (4, 8) = [0, 1177/80000, 281/10000, 757/20000, 437/10000, 913/20000, 437/10000, 757/20000, 281/10000, 1177/80000, 0], (4, 9) = [0, 109/10000, 417/20000, 281/10000, 649/20000, 339/10000, 649/20000, 281/10000, 417/20000, 109/10000, 0], (4, 10) = [0, 227/40000, 109/10000, 1177/80000, 17/1000, 1421/80000, 17/1000, 1177/80000, 109/10000, 227/40000, 0], (5, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (5, 2) = [0, 157/40000, 2579/320000, 181/16000, 17/1280, 223/16000, 17/1280, 181/16000, 2579/320000, 157/40000, 0], (5, 3) = [0, 2579/320000, 327/20000, 7301/320000, 1069/40000, 8969/320000, 1069/40000, 7301/320000, 327/20000, 2579/320000, 0], (5, 4) = [0, 181/16000, 7301/320000, 127/4000, 743/20000, 779/20000, 743/20000, 127/4000, 7301/320000, 181/16000, 0], (5, 5) = [0, 17/1280, 1069/40000, 743/20000, 869/20000, 911/20000, 869/20000, 743/20000, 1069/40000, 17/1280, 0], (5, 6) = [0, 223/16000, 8969/320000, 779/20000, 911/20000, 191/4000, 911/20000, 779/20000, 8969/320000, 223/16000, 0], (5, 7) = [0, 17/1280, 1069/40000, 743/20000, 869/20000, 911/20000, 869/20000, 743/20000, 1069/40000, 17/1280, 0], (5, 8) = [0, 181/16000, 7301/320000, 127/4000, 743/20000, 779/20000, 743/20000, 127/4000, 7301/320000, 181/16000, 0], (5, 9) = [0, 2579/320000, 327/20000, 7301/320000, 1069/40000, 8969/320000, 1069/40000, 7301/320000, 327/20000, 2579/320000, 0], (5, 10) = [0, 157/40000, 2579/320000, 181/16000, 17/1280, 223/16000, 17/1280, 181/16000, 2579/320000, 157/40000, 0], (6, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (6, 2) = [0, 1459/640000, 809/160000, 4889/640000, 371/40000, 12573/1280000, 371/40000, 4889/640000, 809/160000, 1459/640000, 0], (6, 3) = [0, 809/160000, 7/640, 13/800, 627/32000, 1657/80000, 627/32000, 13/800, 7/640, 809/160000, 0], (6, 4) = [0, 4889/640000, 13/800, 3057/128000, 4587/160000, 7749/256000, 4587/160000, 3057/128000, 13/800, 4889/640000, 0], (6, 5) = [0, 371/40000, 627/32000, 4587/160000, 687/20000, 29/800, 687/20000, 4587/160000, 627/32000, 371/40000, 0], (6, 6) = [0, 12573/1280000, 1657/80000, 7749/256000, 29/800, 153/4000, 29/800, 7749/256000, 1657/80000, 12573/1280000, 0], (6, 7) = [0, 371/40000, 627/32000, 4587/160000, 687/20000, 29/800, 687/20000, 4587/160000, 627/32000, 371/40000, 0], (6, 8) = [0, 4889/640000, 13/800, 3057/128000, 4587/160000, 7749/256000, 4587/160000, 3057/128000, 13/800, 4889/640000, 0], (6, 9) = [0, 809/160000, 7/640, 13/800, 627/32000, 1657/80000, 627/32000, 13/800, 7/640, 809/160000, 0], (6, 10) = [0, 1459/640000, 809/160000, 4889/640000, 371/40000, 12573/1280000, 371/40000, 4889/640000, 809/160000, 1459/640000, 0], (7, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (7, 2) = [0, 113/128000, 283/128000, 1271/320000, 26919/5120000, 7297/1280000, 26919/5120000, 1271/320000, 283/128000, 113/128000, 0], (7, 3) = [0, 283/128000, 1677/320000, 11453/1280000, 7421/640000, 32011/2560000, 7421/640000, 11453/1280000, 1677/320000, 283/128000, 0], (7, 4) = [0, 1271/320000, 11453/1280000, 9339/640000, 94939/5120000, 5093/256000, 94939/5120000, 9339/640000, 11453/1280000, 1271/320000, 0], (7, 5) = [0, 26919/5120000, 7421/640000, 94939/5120000, 299/12800, 5121/204800, 299/12800, 94939/5120000, 7421/640000, 26919/5120000, 0], (7, 6) = [0, 7297/1280000, 32011/2560000, 5093/256000, 5121/204800, 107/4000, 5121/204800, 5093/256000, 32011/2560000, 7297/1280000, 0], (7, 7) = [0, 26919/5120000, 7421/640000, 94939/5120000, 299/12800, 5121/204800, 299/12800, 94939/5120000, 7421/640000, 26919/5120000, 0], (7, 8) = [0, 1271/320000, 11453/1280000, 9339/640000, 94939/5120000, 5093/256000, 94939/5120000, 9339/640000, 11453/1280000, 1271/320000, 0], (7, 9) = [0, 283/128000, 1677/320000, 11453/1280000, 7421/640000, 32011/2560000, 7421/640000, 11453/1280000, 1677/320000, 283/128000, 0], (7, 10) = [0, 113/128000, 283/128000, 1271/320000, 26919/5120000, 7297/1280000, 26919/5120000, 1271/320000, 283/128000, 113/128000, 0], (8, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (8, 2) = [0, -373/1280000, -823/2560000, 8947/20480000, 3327/2560000, 8361/5120000, 3327/2560000, 8947/20480000, -823/2560000, -373/1280000, 0], (8, 3) = [0, -823/2560000, -301/2560000, 1981/1280000, 16971/5120000, 1021/256000, 16971/5120000, 1981/1280000, -301/2560000, -823/2560000, 0], (8, 4) = [0, 8947/20480000, 1981/1280000, 9123/2048000, 463/64000, 33889/4096000, 463/64000, 9123/2048000, 1981/1280000, 8947/20480000, 0], (8, 5) = [0, 3327/2560000, 16971/5120000, 463/64000, 5521/512000, 6193/512000, 5521/512000, 463/64000, 16971/5120000, 3327/2560000, 0], (8, 6) = [0, 8361/5120000, 1021/256000, 33889/4096000, 6193/512000, 13829/1024000, 6193/512000, 33889/4096000, 1021/256000, 8361/5120000, 0], (8, 7) = [0, 3327/2560000, 16971/5120000, 463/64000, 5521/512000, 6193/512000, 5521/512000, 463/64000, 16971/5120000, 3327/2560000, 0], (8, 8) = [0, 8947/20480000, 1981/1280000, 9123/2048000, 463/64000, 33889/4096000, 463/64000, 9123/2048000, 1981/1280000, 8947/20480000, 0], (8, 9) = [0, -823/2560000, -301/2560000, 1981/1280000, 16971/5120000, 1021/256000, 16971/5120000, 1981/1280000, -301/2560000, -823/2560000, 0], (8, 10) = [0, -373/1280000, -823/2560000, 8947/20480000, 3327/2560000, 8361/5120000, 3327/2560000, 8947/20480000, -823/2560000, -373/1280000, 0], (9, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (9, 2) = [0, -1367/1024000, -41377/16384000, -11893/4096000, -42793/16384000, -2479/1024000, -42793/16384000, -11893/4096000, -41377/16384000, -1367/1024000, 0], (9, 3) = [0, -41377/16384000, -4859/1024000, -88111/16384000, -1951/409600, -14359/3276800, -1951/409600, -88111/16384000, -4859/1024000, -41377/16384000, 0], (9, 4) = [0, -11893/4096000, -88111/16384000, -11769/2048000, -75397/16384000, -16313/4096000, -75397/16384000, -11769/2048000, -88111/16384000, -11893/4096000, 0], (9, 5) = [0, -42793/16384000, -1951/409600, -75397/16384000, -2981/1024000, -33963/16384000, -2981/1024000, -75397/16384000, -1951/409600, -42793/16384000, 0], (9, 6) = [0, -2479/1024000, -14359/3276800, -16313/4096000, -33963/16384000, -1177/1024000, -33963/16384000, -16313/4096000, -14359/3276800, -2479/1024000, 0], (9, 7) = [0, -42793/16384000, -1951/409600, -75397/16384000, -2981/1024000, -33963/16384000, -2981/1024000, -75397/16384000, -1951/409600, -42793/16384000, 0], (9, 8) = [0, -11893/4096000, -88111/16384000, -11769/2048000, -75397/16384000, -16313/4096000, -75397/16384000, -11769/2048000, -88111/16384000, -11893/4096000, 0], (9, 9) = [0, -41377/16384000, -4859/1024000, -88111/16384000, -1951/409600, -14359/3276800, -1951/409600, -88111/16384000, -4859/1024000, -41377/16384000, 0], (9, 10) = [0, -1367/1024000, -41377/16384000, -11893/4096000, -42793/16384000, -2479/1024000, -42793/16384000, -11893/4096000, -41377/16384000, -1367/1024000, 0], (10, 1) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], (10, 2) = [0, -377861/163840000, -182267/40960000, -1955997/327680000, -32939/5120000, -2115289/327680000, -32939/5120000, -1955997/327680000, -182267/40960000, -377861/163840000, 0], (10, 3) = [0, -182267/40960000, -87851/10240000, -117403/10240000, -252339/20480000, -50597/4096000, -252339/20480000, -117403/10240000, -87851/10240000, -182267/40960000, 0], (10, 4) = [0, -1955997/327680000, -117403/10240000, -24889/1638400, -26521/1638400, -132473/8192000, -26521/1638400, -24889/1638400, -117403/10240000, -1955997/327680000, 0], (10, 5) = [0, -32939/5120000, -252339/20480000, -26521/1638400, -34881/2048000, -17313/1024000, -34881/2048000, -26521/1638400, -252339/20480000, -32939/5120000, 0], (10, 6) = [0, -2115289/327680000, -50597/4096000, -132473/8192000, -17313/1024000, -274059/16384000, -17313/1024000, -132473/8192000, -50597/4096000, -2115289/327680000, 0], (10, 7) = [0, -32939/5120000, -252339/20480000, -26521/1638400, -34881/2048000, -17313/1024000, -34881/2048000, -26521/1638400, -252339/20480000, -32939/5120000, 0], (10, 8) = [0, -1955997/327680000, -117403/10240000, -24889/1638400, -26521/1638400, -132473/8192000, -26521/1638400, -24889/1638400, -117403/10240000, -1955997/327680000, 0], (10, 9) = [0, -182267/40960000, -87851/10240000, -117403/10240000, -252339/20480000, -50597/4096000, -252339/20480000, -117403/10240000, -87851/10240000, -182267/40960000, 0], (10, 10) = [0, -377861/163840000, -182267/40960000, -1955997/327680000, -32939/5120000, -2115289/327680000, -32939/5120000, -1955997/327680000, -182267/40960000, -377861/163840000, 0]})

(3)

``


Download matrix.mw

solve(equations, variables, parametric=mode, parameters=params);

 restart; with(plots): with(LinearAlgebra): with(Statistics):

 m0 := proc (t) options operator, arrow; 1-exp((-1)*t*.5) end proc:

 m := proc (t) options operator, arrow; (1/(1+exp(-t+5))-0.67e-2)*1.0067 end proc:

 n[max] := 10; delt := 0.2; n := n[max]/delt:

 T := Vector(50):

 b := vector(50): evalm(b):

 for i from 2 to n do T[i] := T[i-1]+delt end do:

 fun := proc (t) options operator, arrow; add(b[i]*m0(t-T[i]), i = 1 .. n) end proc:

 fun(t):

 fu := vector(50):

 for x to 50 do fu[x] := fun(x*delt) = m(x*delt) end do:

 s := evalf(solve({seq(fu[i],i=1..50)}, {seq(b[i],i=1..50)},parametric=full, parameters={seq(b[i],i=1..50)}));

 

10

 

.2

 

[{b[1] = 6632050230., b[2] = 6505729899., b[3] = 5636682823., b[4] = 0.1068729793e11, b[5] = -1428705149., b[6] = -1235555916., b[7] = -0.1252053888e11, b[8] = -5368992673., b[9] = -567972498.0, b[10] = -4508206827., b[11] = 27941242.89, b[12] = -691495122.7, b[13] = -2666635097., b[14] = -1675983708., b[15] = 0.1041620830e11, b[16] = -506815234.9, b[17] = -1277551575., b[18] = 7343414454., b[19] = -599372783.5, b[20] = -4370394490., b[21] = 4035593989., b[22] = -1638928254., b[23] = -3373392322., b[24] = 1529681878., b[25] = -4606028072., b[26] = -632413964.7, b[27] = 1022649954., b[28] = -1933456919., b[29] = -1690144277., b[30] = 62160643.15, b[31] = -621175235.6, b[32] = -1203399042., b[33] = -447008133.5, b[34] = 388149333.4, b[35] = -1010748776., b[36] = -1413144413., b[37] = -872397781.7, b[38] = -441985211.1, b[39] = -372785490.3, b[40] = 146480459.5, b[41] = 429329750.0, b[42] = 516883091.6, b[43] = 307753480.8, b[44] = 342306373.7, b[45] = 666668424.5, b[46] = 353573794.3, b[47] = -136394755.8, b[48] = 274858487.9, b[49] = 202190899.2, b[50] = 284017165.7}]

(1)

``


Download solve,parametric.mw

in carl's answer, u can specify n as input ( and not need to be known ) like this :

``

restart; n := 5

P := proc (j, n) options operator, arrow; m*((1/2)*m)^(j-1)/(2*((1/2)*m)^n-1) end proc

proc (j, n) options operator, arrow; m*((1/2)*m)^(j-1)/(2*((1/2)*m)^n-1) end proc

(1)

seq(P(j, n), j = 1 .. n-1)

m/((1/16)*m^5-1), (1/2)*m^2/((1/16)*m^5-1), (1/4)*m^3/((1/16)*m^5-1), (1/8)*m^4/((1/16)*m^5-1)

(2)

restart

P := proc (a, b) local i, j, n; j := a; n := b; seq(m*((1/2)*m)^(j-1)/(2*((1/2)*m)^n-1), j = 1 .. n-1) end proc;

proc (a, b) local i, j, n; j := a; n := b; seq(m*((1/2)*m)^(j-1)/(2*((1/2)*m)^n-1), j = 1 .. n-1) end proc

(3)

P(5, 5);

m/((1/16)*m^5-1), (1/2)*m^2/((1/16)*m^5-1), (1/4)*m^3/((1/16)*m^5-1), (1/8)*m^4/((1/16)*m^5-1)

(4)

``

``


Download procedure.mw

i removed your boundary condition correspoding to D, changed X1s to X , X2s to Y and your independent varibale to t, and solve it numericly .

``

restart:

sys:={54.15836673*(diff(Y(t), t$2)) = -365.4395362*(diff(X(t), t))+208.2315661*Y(t),641.1196154*(diff(X(t), t$2)) = 365.4395362*(diff(Y(t), t))-2.575699975*X(t)-7.882173342};

{641.1196154*(diff(diff(X(t), t), t)) = 365.4395362*(diff(Y(t), t))-2.575699975*X(t)-7.882173342, 54.15836673*(diff(diff(Y(t), t), t)) = -365.4395362*(diff(X(t), t))+208.2315661*Y(t)}

(1)

BCs:={X(0) = 0, X(15) = 0, Y(0) = 0, Y(15) = 0};

{X(0) = 0, X(15) = 0, Y(0) = 0, Y(15) = 0}

(2)

ans:=dsolve(sys union BCs,method = bvp,numeric);

proc (x_bvp) local res, data, solnproc, _ndsol, outpoint, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](x_bvp) else outpoint := evalf(x_bvp) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(39, {(1) = .0, (2) = .38351121101718294, (3) = .7670525174337857, (4) = 1.1505124184681526, (5) = 1.5339974108667955, (6) = 1.9176656846625835, (7) = 2.301666900840626, (8) = 2.686166017900895, (9) = 3.0714248709070704, (10) = 3.4578482205784917, (11) = 3.8459964328894594, (12) = 4.236562473720028, (13) = 4.63029143999511, (14) = 5.027875289828752, (15) = 5.429838794289437, (16) = 5.836424009646885, (17) = 6.2474993950021105, (18) = 6.662514723812331, (19) = 7.0804709956849745, (20) = 7.500000000010247, (21) = 7.919529004335479, (22) = 8.337485276208003, (23) = 8.752500605018055, (24) = 9.163575990373069, (25) = 9.570161205730289, (26) = 9.972124710190753, (27) = 10.369708560024193, (28) = 10.763437526299098, (29) = 11.154003567129536, (30) = 11.542151779440406, (31) = 11.928575129111765, (32) = 12.313833982117927, (33) = 12.698333099178127, (34) = 13.082334315356094, (35) = 13.46600258915182, (36) = 13.849487581545711, (37) = 14.232947482570854, (38) = 14.616488788987173, (39) = 15.0}, datatype = float[8], order = C_order); Y := Matrix(39, 4, {(1, 1) = .0, (1, 2) = -0.6793369507317244e-1, (1, 3) = .0, (1, 4) = -1.9459338300331779, (2, 1) = -.10602083366137158, (2, 2) = -.47830225714828567, (2, 3) = -.7117780496690446, (2, 4) = -1.7639009337730573, (3, 1) = -.36160003234017934, (3, 2) = -.8472923030359297, (3, 3) = -1.3514541665563253, (3, 4) = -1.5697893895641046, (4, 1) = -.7502210987400865, (4, 2) = -1.1720549705223295, (4, 3) = -1.914414678410873, (4, 4) = -1.3647080837605474, (5, 1) = -1.2545530420596849, (5, 2) = -1.4502553791819308, (5, 3) = -2.39689767195954, (5, 4) = -1.15018486564728, (6, 1) = -1.8566173481546144, (6, 2) = -1.6799591168281722, (6, 3) = -2.79579656195079, (6, 4) = -.9281704537475385, (7, 1) = -2.5378521768016573, (7, 2) = -1.8596637699845209, (7, 3) = -3.1087154929089165, (7, 4) = -.7010051571974785, (8, 1) = -3.279288032751613, (8, 2) = -1.9883866750492754, (8, 3) = -3.334122195861295, (8, 4) = -.4713409316902086, (9, 1) = -4.061886116890226, (9, 2) = -2.065729725471639, (9, 3) = -3.4714619352702867, (9, 4) = -.24202885448366737, (10, 1) = -4.866826172046525, (10, 2) = -2.091868276601214, (10, 3) = -3.5211409222552237, (10, 4) = -0.1603573298160153e-1, (11, 1) = -5.675665479260962, (11, 2) = -2.0675031801983383, (11, 3) = -3.484446320882544, (11, 4) = .20360220465223156, (12, 1) = -6.470336286978461, (12, 2) = -1.9938169734959315, (12, 3) = -3.3634729722172945, (12, 4) = .4137863074411373, (13, 1) = -7.232967882314578, (13, 2) = -1.872482432656078, (13, 3) = -3.161138803756909, (13, 4) = .6113217112064968, (14, 1) = -7.945694250521905, (14, 2) = -1.7057564611764606, (14, 3) = -2.8813454574345343, (14, 4) = .7928834016987208, (15, 1) = -8.590600279196805, (15, 2) = -1.4966558142118183, (15, 3) = -2.5292781992830395, (15, 4) = .9550156730871263, (16, 1) = -9.149934028828042, (16, 2) = -1.2491872517510594, (16, 3) = -2.111798389510939, (16, 4) = 1.0941915922740408, (17, 1) = -9.606698109768974, (17, 2) = -.9685705146665443, (17, 3) = -1.6378237999177483, (17, 4) = 1.2069567468244398, (18, 1) = -9.945624169660137, (18, 2) = -.6613721970818361, (18, 3) = -1.1185574549472468, (18, 4) = 1.2901567914192125, (19, 1) = -10.154386401967724, (19, 2) = -.3355082255048767, (19, 3) = -.5674927431143325, (19, 4) = 1.3412154143317405, (20, 1) = -10.224912267171778, (20, 2) = 0.822899012356365e-11, (20, 3) = 0.13919232841285866e-10, (20, 4) = 1.358433178318087, (21, 1) = -10.154386401960862, (21, 2) = .3355082255210961, (21, 3) = .5674927431417645, (21, 4) = 1.3412154143300643, (22, 1) = -9.945624169646688, (22, 2) = .6613721970973515, (22, 3) = 1.1185574549734794, (22, 4) = 1.2901567914159184, (23, 1) = -9.606698109749443, (23, 2) = .968570514680947, (23, 3) = 1.6378237999420855, (23, 4) = 1.2069567468196336, (24, 1) = -9.149934028803116, (24, 2) = 1.2491872517639921, (24, 3) = 2.111798389532771, (24, 4) = 1.0941915922678662, (25, 1) = -8.590600279167282, (25, 2) = 1.4966558142229935, (25, 3) = 2.529278199301876, (25, 4) = .9550156730797464, (26, 1) = -7.945694250488633, (26, 2) = 1.705756461185658, (26, 3) = 2.8813454574499993, (26, 4) = .792883401690306, (27, 1) = -7.232967882278435, (27, 2) = 1.8724824326631273, (27, 3) = 3.1611388037687087, (27, 4) = .6113217111972187, (28, 1) = -6.47033628694033, (28, 2) = 1.9938169735007036, (28, 3) = 3.363472972225207, (28, 4) = .41378630743116585, (29, 1) = -5.675665479221692, (29, 2) = 2.0675031802007426, (29, 3) = 3.48444632088641, (29, 4) = .20360220464171913, (30, 1) = -4.866826172006997, (30, 2) = 2.0918682766011796, (30, 3) = 3.52114092225492, (30, 4) = -0.16035732992500905e-1, (31, 1) = -4.061886116851318, (31, 2) = 2.0657297254691165, (31, 3) = 3.471461935265727, (31, 4) = -.24202885449480616, (32, 1) = -3.2792880327141893, (32, 2) = 1.988386675044235, (32, 3) = 3.334122195852423, (32, 4) = -.4713409317014557, (33, 1) = -2.537852176766784, (33, 2) = 1.8596637699769885, (33, 3) = 3.108715492895771, (33, 4) = -.7010051572086486, (34, 1) = -1.8566173481232375, (34, 2) = 1.6799591168182009, (34, 3) = 2.795796561933454, (34, 4) = -.928170453758488, (35, 1) = -1.254553042032688, (35, 2) = 1.4502553791695916, (35, 3) = 2.3968976719381296, (35, 4) = -1.1501848656578912, (36, 1) = -.7502210987238381, (36, 2) = 1.1720549705114174, (36, 3) = 1.9144146783919551, (36, 4) = -1.3647080837681445, (37, 1) = -.36160003233624866, (37, 2) = .8472923030317289, (37, 3) = 1.3514541665490432, (37, 4) = -1.5697893895665231, (38, 1) = -.1060208336592883, (38, 2) = .47830225714385494, (38, 3) = .711778049661362, (38, 4) = -1.7639009337751965, (39, 1) = .0, (39, 2) = 0.6793369507317255e-1, (39, 3) = .0, (39, 4) = -1.9459338300331794}, datatype = float[8], order = C_order); YP := Matrix(39, 4, {(1, 1) = -0.6793369507317244e-1, (1, 2) = -1.1214807851677133, (1, 3) = -1.9459338300331779, (1, 4) = .4583900792957371, (2, 1) = -.47830225714828567, (2, 2) = -1.0172957104381275, (2, 3) = -1.7639009337730573, (2, 4) = .4907071357964794, (3, 1) = -.8472923030359297, (3, 2) = -.9056249296622738, (3, 3) = -1.5697893895641046, (3, 4) = .5210402443184181, (4, 1) = -1.1720549705223295, (4, 2) = -.7871668654837667, (4, 3) = -1.3647080837605474, (4, 4) = .5479053370681317, (5, 1) = -1.4502553791819308, (5, 2) = -.662862022532546, (5, 3) = -1.15018486564728, (5, 4) = .5700115972869568, (6, 1) = -1.6799591168281722, (6, 2) = -.5338945432253852, (6, 3) = -.9281704537475385, (6, 4) = .586250764446552, (7, 1) = -1.8596637699845209, (7, 2) = -.4016729809663424, (7, 3) = -.7010051571974785, (7, 4) = .5956968773479954, (8, 1) = -1.9883866750492754, (8, 2) = -.2677851661110939, (8, 3) = -.4713409316902086, (8, 4) = .5976106713973248, (9, 1) = -2.065729725471639, (9, 2) = -.1339327071567271, (9, 3) = -.24202885448366737, (9, 4) = .5914387616732935, (10, 1) = -2.091868276601214, (10, 2) = -0.18823010351991486e-2, (10, 3) = -0.1603573298160153e-1, (10, 4) = .5768025510882371, (11, 1) = -2.0675031801983383, (11, 2) = .12656130210245609, (11, 3) = .20360220465223156, (11, 4) = .5534821429233556, (12, 1) = -1.9938169734959315, (12, 2) = .24955927740252992, (12, 3) = .4137863074411373, (12, 4) = .5214024577770111, (13, 1) = -1.872482432656078, (13, 2) = .3652187498862573, (13, 3) = .6113217112064968, (13, 4) = .48063170177329617, (14, 1) = -1.7057564611764606, (14, 2) = .47157267763404304, (14, 3) = .7928834016987208, (14, 4) = .43139729604922294, (15, 1) = -1.4966558142118183, (15, 2) = .5665793269987861, (15, 3) = .9550156730871263, (15, 4) = .37411848400665626, (16, 1) = -1.2491872517510594, (16, 2) = .6481570201882005, (16, 3) = 1.0941915922740408, (16, 4) = .3094503210388524, (17, 1) = -.9685705146665443, (17, 2) = .71426844774737, (17, 3) = 1.2069567468244398, (17, 4) = .23832596112727966, (18, 1) = -.6613721970818361, (18, 2) = .7630542855243145, (18, 3) = 1.2901567914192125, (18, 4) = .16198011259091505, (19, 1) = -.3355082255048767, (19, 2) = .792996511423492, (19, 3) = 1.3412154143317405, (19, 4) = 0.8194611356782522e-1, (20, 1) = 0.822899012356365e-11, (20, 2) = .8030940111712972, (20, 3) = 1.358433178318087, (20, 4) = -0.2008455706211582e-11, (21, 1) = .3355082255210961, (21, 2) = .7929965114225089, (21, 3) = 1.3412154143300643, (21, 4) = -0.8194611357179582e-1, (22, 1) = .6613721970973515, (22, 2) = .763054285522383, (22, 3) = 1.2901567914159184, (22, 4) = -.16198011259474576, (23, 1) = .968570514680947, (23, 2) = .7142684477445519, (23, 3) = 1.2069567468196336, (23, 4) = -.2383259611308901, (24, 1) = 1.2491872517639921, (24, 2) = .6481570201845809, (24, 3) = 1.0941915922678662, (24, 4) = -.30945032104217596, (25, 1) = 1.4966558142229935, (25, 2) = .566579326994461, (25, 3) = .9550156730797464, (25, 4) = -.37411848400963876, (26, 1) = 1.705756461185658, (26, 2) = .4715726776291129, (26, 3) = .792883401690306, (26, 4) = -.43139729605182175, (27, 1) = 1.8724824326631273, (27, 2) = .36521874988082353, (27, 3) = .6113217111972187, (27, 4) = -.48063170177549175, (28, 1) = 1.9938169735007036, (28, 2) = .24955927739669304, (28, 3) = .41378630743116585, (28, 4) = -.521402457778791, (29, 1) = 2.0675031802007426, (29, 2) = .1265613020963062, (29, 3) = .20360220464171913, (29, 4) = -.5534821429247145, (30, 1) = 2.0918682766011796, (30, 2) = -0.1882301041570623e-2, (30, 3) = -0.16035732992500905e-1, (30, 4) = -.5768025510891714, (31, 1) = 2.0657297254691165, (31, 2) = -.13393270716323252, (31, 3) = -.24202885449480616, (31, 4) = -.5914387616738033, (32, 1) = 1.988386675044235, (32, 2) = -.26778516611765507, (32, 3) = -.4713409317014557, (32, 4) = -.5976106713974243, (33, 1) = 1.8596637699769885, (33, 2) = -.40167298097284954, (33, 3) = -.7010051572086486, (33, 4) = -.5956968773477129, (34, 1) = 1.6799591168182009, (34, 2) = -.5338945432317524, (34, 3) = -.928170453758488, (34, 4) = -.5862507644459232, (35, 1) = 1.4502553791695916, (35, 2) = -.662862022538703, (35, 3) = -1.1501848656578912, (35, 4) = -.5700115972860171, (36, 1) = 1.1720549705114174, (36, 2) = -.7871668654881623, (36, 3) = -1.3647080837681445, (36, 4) = -.5479053370672382, (37, 1) = .8472923030317289, (37, 2) = -.9056249296636681, (37, 3) = -1.5697893895665231, (37, 4) = -.5210402443180708, (38, 1) = .47830225714385494, (38, 2) = -1.0172957104393552, (38, 3) = -1.7639009337751965, (38, 4) = -.4907071357961206, (39, 1) = 0.6793369507317255e-1, (39, 2) = -1.1214807851677142, (39, 3) = -1.9459338300331794, (39, 4) = -.45839007929573783}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(39, {(1) = .0, (2) = .38351121101718294, (3) = .7670525174337857, (4) = 1.1505124184681526, (5) = 1.5339974108667955, (6) = 1.9176656846625835, (7) = 2.301666900840626, (8) = 2.686166017900895, (9) = 3.0714248709070704, (10) = 3.4578482205784917, (11) = 3.8459964328894594, (12) = 4.236562473720028, (13) = 4.63029143999511, (14) = 5.027875289828752, (15) = 5.429838794289437, (16) = 5.836424009646885, (17) = 6.2474993950021105, (18) = 6.662514723812331, (19) = 7.0804709956849745, (20) = 7.500000000010247, (21) = 7.919529004335479, (22) = 8.337485276208003, (23) = 8.752500605018055, (24) = 9.163575990373069, (25) = 9.570161205730289, (26) = 9.972124710190753, (27) = 10.369708560024193, (28) = 10.763437526299098, (29) = 11.154003567129536, (30) = 11.542151779440406, (31) = 11.928575129111765, (32) = 12.313833982117927, (33) = 12.698333099178127, (34) = 13.082334315356094, (35) = 13.46600258915182, (36) = 13.849487581545711, (37) = 14.232947482570854, (38) = 14.616488788987173, (39) = 15.0}, datatype = float[8], order = C_order); Y := Matrix(39, 4, {(1, 1) = .0, (1, 2) = 0.4169474949470319e-8, (1, 3) = .0, (1, 4) = 0.7835240842428686e-7, (2, 1) = -0.23769322024608386e-8, (2, 2) = 0.20574993513536933e-7, (2, 3) = 0.28915467105198323e-7, (2, 4) = 0.6739578827522519e-7, (3, 1) = 0.13432614554121212e-8, (3, 2) = 0.3455328846284316e-7, (3, 3) = 0.53555371547114894e-7, (3, 4) = 0.56808022185555136e-7, (4, 1) = 0.10215180140437365e-7, (4, 2) = 0.46210741231203555e-7, (4, 3) = 0.7412236554868284e-7, (4, 4) = 0.4655270349628992e-7, (5, 1) = 0.23345917507038193e-7, (5, 2) = 0.5565120904080144e-7, (5, 3) = 0.9081227975256859e-7, (5, 4) = 0.36610408987452024e-7, (6, 1) = 0.39899737408272976e-7, (6, 2) = 0.6297121533476722e-7, (6, 3) = 0.10380568393478045e-6, (6, 4) = 0.26980586305072067e-7, (7, 1) = 0.59092586147958576e-7, (7, 2) = 0.6826227696538385e-7, (7, 3) = 0.11327212034532727e-6, (7, 4) = 0.17679640490096123e-7, (8, 1) = 0.8018750204181922e-7, (8, 2) = 0.7161521879446997e-7, (8, 3) = 0.119377899946789e-6, (8, 4) = 0.8737080945867287e-8, (9, 1) = 0.10249438427814322e-6, (9, 2) = 0.7312342317943269e-7, (9, 3) = 0.12229202004119914e-6, (9, 4) = 0.19111174725149373e-9, (10, 1) = 0.12537059509966982e-6, (10, 2) = 0.7288351861281618e-7, (10, 3) = 0.12218760188581384e-6, (10, 4) = -0.7914095997972168e-8, (11, 1) = 0.14821970623535092e-6, (11, 2) = 0.7099509769899028e-7, (11, 3) = 0.11924158176630196e-6, (11, 4) = -0.15529823095629243e-7, (12, 1) = 0.17048746533454583e-6, (12, 2) = 0.6756068395918315e-7, (12, 3) = 0.11363480905133206e-6, (12, 4) = -0.2260318036205843e-7, (13, 1) = 0.1916550626721734e-6, (13, 2) = 0.6268707361085955e-7, (13, 3) = 0.10555443975346679e-6, (13, 4) = -0.29076602733567843e-7, (14, 1) = 0.21123297474510157e-6, (14, 2) = 0.5648861648180569e-7, (14, 3) = 0.9519964592930939e-7, (14, 4) = -0.3488759907336914e-7, (15, 1) = 0.22875849192160096e-6, (15, 2) = 0.4909200331686155e-7, (15, 3) = 0.8278991187863618e-7, (15, 4) = -0.3996949062688898e-7, (16, 1) = 0.243799139386567e-6, (16, 2) = 0.4064167014273389e-7, (16, 3) = 0.68574371853428e-7, (16, 4) = -0.44253446873786724e-7, (17, 1) = 0.2559630838180394e-6, (17, 2) = 0.3130438765940954e-7, (17, 3) = 0.5283974357116317e-7, (17, 4) = -0.4767211588664755e-7, (18, 1) = 0.2649153933065295e-6, (18, 2) = 0.2127148944881124e-7, (18, 3) = 0.359142760601206e-7, (18, 4) = -0.5016454130276307e-7, (19, 1) = 0.27039685011429327e-6, (19, 2) = 0.10758443348014332e-7, (19, 3) = 0.18167086595288972e-7, (19, 4) = -0.5168150189899868e-7, (20, 1) = 0.2722428369590898e-6, (20, 2) = -0.16362472803880316e-15, (20, 3) = 0.6585452897692007e-16, (20, 4) = -0.52190877518771335e-7, (21, 1) = 0.27039684789364484e-6, (21, 2) = -0.10758443759892585e-7, (21, 3) = -0.18167086098998353e-7, (21, 4) = -0.51681501153762164e-7, (22, 1) = 0.26491539334159847e-6, (22, 2) = -0.21271489368459295e-7, (22, 3) = -0.3591427510772471e-7, (22, 4) = -0.50164540061434875e-7, (23, 1) = 0.2559630826316772e-6, (23, 2) = -0.3130438687584957e-7, (23, 3) = -0.528397420405275e-7, (23, 4) = -0.47672114560932285e-7, (24, 1) = 0.24379913797799355e-6, (24, 2) = -0.4064167016755145e-7, (24, 3) = -0.6857437093143762e-7, (24, 4) = -0.44253445979182944e-7, (25, 1) = 0.22875848980850263e-6, (25, 2) = -0.4909200134059814e-7, (25, 3) = -0.8278990964437361e-7, (25, 4) = -0.39969488578280374e-7, (26, 1) = 0.211232972263855e-6, (26, 2) = -0.56488614358634603e-7, (26, 3) = -0.9519964517538756e-7, (26, 4) = -0.34887596117693075e-7, (27, 1) = 0.19165506550982305e-6, (27, 2) = -0.6268707119103872e-7, (27, 3) = -0.1055544358184001e-6, (27, 4) = -0.2907660029411003e-7, (28, 1) = 0.1704874678186134e-6, (28, 2) = -0.6756068148678297e-7, (28, 3) = -0.11363480469247379e-6, (28, 4) = -0.2260318184630453e-7, (29, 1) = 0.14821970985770134e-6, (29, 2) = -0.7099509679967245e-7, (29, 3) = -0.11924157775958776e-6, (29, 4) = -0.15529825250558246e-7, (30, 1) = 0.1253706027608365e-6, (30, 2) = -0.728835199418429e-7, (30, 3) = -0.1221875992965587e-6, (30, 4) = -0.7914098566907212e-8, (31, 1) = 0.10249438939377254e-6, (31, 2) = -0.731234230669166e-7, (31, 3) = -0.12229201766964834e-6, (31, 4) = 0.19110773857564476e-9, (32, 1) = 0.8018750758996192e-7, (32, 2) = -0.7161521851463498e-7, (32, 3) = -0.11937789774462777e-6, (32, 4) = 0.8737076425495856e-8, (33, 1) = 0.5909258802411502e-7, (33, 2) = -0.6826227739932252e-7, (33, 3) = -0.11327212139868922e-6, (33, 4) = 0.17679637485508423e-7, (34, 1) = 0.3989974032995724e-7, (34, 2) = -0.6297121687044666e-7, (34, 3) = -0.10380568609432601e-6, (34, 4) = 0.26980584439462847e-7, (35, 1) = 0.23345918977407193e-7, (35, 2) = -0.55651210067980086e-7, (35, 3) = -0.9081228185305163e-7, (35, 4) = 0.36610409724641004e-7, (36, 1) = 0.1021518123179639e-7, (36, 2) = -0.4621074260181786e-7, (36, 3) = -0.7412236942890131e-7, (36, 4) = 0.4655270703828583e-7, (37, 1) = 0.1343261922182429e-8, (37, 2) = -0.3455328945578425e-7, (37, 3) = -0.5355537272993128e-7, (37, 4) = 0.5680802529503699e-7, (38, 1) = -0.23769320272060756e-8, (38, 2) = -0.20574994249066573e-7, (38, 3) = -0.28915468392130814e-7, (38, 4) = 0.6739579196183749e-7, (39, 1) = .0, (39, 2) = -0.41694749416285906e-8, (39, 3) = .0, (39, 4) = 0.7835241170249775e-7}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[39] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(2.722428369590898e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 39, [X(t), diff(X(t), t), Y(t), diff(Y(t), t)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[39] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[39] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(39, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(39, 4, X, Y, outpoint, yout, L, V) end if; [t = outpoint, seq('[X(t), diff(X(t), t), Y(t), diff(Y(t), t)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[39] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(2.722428369590898e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 39, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[39] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[39] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(39, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(39, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(0..0, {}), (3) = [t, X(t), diff(X(t), t), Y(t), diff(Y(t), t)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(x_bvp) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(x_bvp) else _ndsol := pointto(data[2][0]); return ('_ndsol')(x_bvp) end if end if; try res := solnproc(outpoint); [t = res[1], seq('[X(t), diff(X(t), t), Y(t), diff(Y(t), t)]'[i] = res[i+1], i = 1 .. 4)] catch: error  end try end proc

(3)

ans(1,1);

[t = 1., X(t) = HFloat(-0.5829077966809866), diff(X(t), t) = HFloat(-1.0500088098537468), Y(t) = HFloat(-1.702840309010038), diff(Y(t), t) = HFloat(-1.446427441705165)]

(4)

plots:-odeplot(ans,[X(t),Y(t)],t=0..15);

 

plots:-odeplot(ans,[t,Y(t)],t=0..15);

 

plots:-odeplot(ans,[t,X(t)],t=0..15);

 

``

``


Download ode.mw

 

restart:

(evala(AFactor(Pi*(t^2+1))));

Pi*(t-RootOf(_Z^2+1))*(RootOf(_Z^2+1)+t)

(1)

evala(Factor(Pi*(t^2+1),I));

Pi*(t+I)*(t-I)

(2)

 

``

 

Download factor.mw

good luck !

 

an error in : if R=<=epsilon    then  (=<=) is incorrect .
hstar should be local to avoid some warnings,
and z[0] should be defined.
good luck !

``

restart:

ode := diff(y(x), x) = 2*x+y(x);

f:=(x,y)->2*x-y;

 

analyticsol := rhs(dsolve({ode, y(0) = 1}));

RKadaptivestepsize := proc (f, a, b, epsilon, N)

local x, y, n, k,z,R,p,h,hstar;

p:=2;

h := evalf(b-a)/N; ## we begin with this setpsize

x[0] := a; y[0] := 1;z[0]:=1; ## Initialisation

for n from 0 to N-1 do  ##loop

x[n+1] := a+(n+1)*h;  ## noeuds

k[1] := f(x[n], y[n]);

k[2] := f(x[n]+h, y[n]+h*k[1]);

k[3] := f(x[n]+h/2, y[n]+h/4*(k[1]+k[2]));

z[n+1] := z[n]+(h/2)*(k[1]+k[2]);## 2-stage runge Kutta.

y[n+1] := y[n]+(h/6)*(k[1]+k[2]+4*k[3]);

R:=abs(y[n+1]-z[n+1]); ## local erreur

hstar:=sqrt(epsilon/R);

if R<=epsilon    then

   x[n] := x[n+1]+h;

   y[n]:=y[n+1];

   n:=n+1;

 

else

 

h:=hstar;

end if

 end do;

[seq([x[n], y[n]], n = 0 .. N)];

[seq([x[n], z[n]], n = 0 .. N)];

end proc:

 

epsilon:=1e-8;

ans:=RKadaptivestepsize((x,y)->2*x-y,0,1, epsilon,20);

 

diff(y(x), x) = 2*x+y(x)

 

proc (x, y) options operator, arrow; 2*x-y end proc

 

-2-2*x+3*exp(x)

 

0.1e-7

 

[[0, 1], [0.5000000000e-1, .9537500000], [0.2529822128e-1, .9431799074], [0.3765843990e-1, .9322041622], [0.4983821056e-1, .9217502798], [0.6185717430e-1, .9117968125], [0.7372782360e-1, .9023241793], [0.8546135836e-1, .8933142925], [0.9706758048e-1, .8847504074], [.1085552954, .8766169594], [.1199324443, .8688994360], [.1312061689, .8615842706], [.1423828190, .8546587533], [.1534683349, .8481109364], [.1644679459, .8419295761], [.1753866618, .8361040561], [.1862287757, .8306243489], [.1969984958, .8254809504], [.2076995128, .8206648486], [.2183352831, .8161674787], [.2289090802, .8119806881]]

(1)

plots:-pointplot(ans);

 

``

``

Download corrected.mw

restart:
with(Student[NumericalAnalysis])
RungeKutta(diff(y(t), t) = exp(t), y(0) = .5, t = 3, submethod = rk4, numsteps = 20);

as maple help page :

numsteps = posint
The number of steps used for the chosen numerical method. This option determines the static step size for each iteration in the algorithm. The default value is 5.

if u wish to control step size use :

dsolve(odesys, numeric, method=rkf45, vars, options);

The dsolve command with the options numeric and method=rkf45 finds a numerical solution using a Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant. This is the default method of the type=numeric solution for initial value problems when the stiff argument is not used. The other non-stiff method is a Runge-Kutta method with the Cash-Karp coefficients, ck45.



and also see : 

?dsolve/Error_Control

The Maple numerical IVP solvers control the discretization error by means of the options abserr, relerr, minstep, maxstep, and initstep. Note that the classical methods do not estimate the discretization error or vary the step size to control it.

The other options, minstep, maxstep, and initstep, are generally intended as fine tuning options and must be used with care.
The minstep parameter places a minimum on the size of the steps taken by the solver, and forces an error if the solver cannot achieve the required error tolerance without reducing the step below the minimum. This can be used to recognize singularities, and can also be used to limit the cost of the of the computation, though a better way to accomplish this is to limit the number of evaluations of
f(x, y)
, see dsolve[maxfun].
The maxstep parameter places a maximum on the size of the steps taken by the solver, so that even if the step control indicates that a larger step is possible, the size of the step will not exceed the imposed limit. This can be used to ensure that the solver does not lose the scale of the problem.
You can specify to the solver the scale of the problem near the initial point
x = a
by supplying an initial step size as initstep. The solver uses this step size if the error of the step is acceptable. Otherwise, it reduces the step size and tries again.
The minstep and maxstep options are not available for the solvers rkf45, ck45, rosenbrock, and the related dae extension methods, as they require control of these parameters to provide a good solution.


for example :

example.mw

g
ood luck !

u can do this like this code i upload, by giving numbers to R[0] and x[0] ; ( remove # from the second line ) it computes x[i]'s . good luck  

restart:

#R[0]:=5;x[0]:=5;

 

n:=5;

n := 5

(1)

for i from 0 to n do
x[i+1]:=evalf((R[0]*x[i])/(1+x[i])^4);
od;

x[1] := R[0]*x[0]/(1.+x[0])^4

x[2] := R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4)

x[3] := R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4)

x[4] := R[0]^4*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4*(1.+R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4))^4)

x[5] := R[0]^5*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4*(1.+R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4))^4*(1.+R[0]^4*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4*(1.+R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4))^4))^4)

x[6] := R[0]^6*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4*(1.+R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4))^4*(1.+R[0]^4*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4*(1.+R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4))^4))^4*(1.+R[0]^5*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4*(1.+R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4))^4*(1.+R[0]^4*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4*(1.+R[0]^3*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4*(1.+R[0]^2*x[0]/((1.+x[0])^4*(1.+R[0]*x[0]/(1.+x[0])^4)^4))^4))^4))^4))^4)

(2)

 

 

 

 

 

 

 


Download maple_problem.mws

see 

help("plot,detail");
help("plot,options");
good luck !

http://www.mapleprimes.com/questions/151734-Query-Related-To-Input-Of-A-Column-Vector-Matrix#answer151738

hope it helps u. good luck !

First 6 7 8 9 Page 8 of 9