mehdi jafari

749 Reputation

13 Badges

12 years, 106 days

MaplePrimes Activity


These are questions asked by mehdi jafari

Hi, i want to calculate fourier transform of functions with fractional powers. how can i do this? for example what is fourier transform of sqrt(x) ? I want a function or an expression as output, not the inetgral itself. thnx in advance

restart:with(inttrans):

f := x -> x^(1/2);
int(f(x)*exp(-I*w*x), x = -infinity .. infinity);

proc (x) options operator, arrow; x^(1/2) end proc

 

int(x^(1/2)*exp(-I*w*x), x = -infinity .. infinity)

(1)

fourier(f(x),x,w)

fourier(x^(1/2), x, w)

(2)

 

 

Download fracfourier.mw

i have on ode with some parameters. it is ok and it is solved. but when i substitute the parameter itself, it is not solved, can i use any assumption to solve this? tnx for the help.

restart

ode := diff(T(x), x, x)+q/k = 0

diff(diff(T(x), x), x)+q/k = 0

(1)

dsolve(ode)

T(x) = -(1/2)*q*x^2/k+_C1*x+_C2

(2)

ics1 := -k*(D(T))(0) = h[1]*(T[inf1]-T(0)), -k*(D(T))(0.5e-1) = h[2]*(T(0.5e-1)-T[inf2])

-k*(D(T))(0) = h[1]*(T[inf1]-T(0)), -k*(D(T))(0.5e-1) = h[2]*(T(0.5e-1)-T[inf2])

(3)

dsolve({ics1, ode})

T(x) = -(1/2)*q*x^2/k-(1/40)*h[1]*(800*k*T[inf1]*h[2]-800*k*T[inf2]*h[2]-40*k*q-q*h[2])*x/((20*k*h[1]+20*k*h[2]+h[1]*h[2])*k)+(1/40)*(800*k*T[inf1]*h[1]+800*k*T[inf2]*h[2]+40*T[inf1]*h[1]*h[2]+40*k*q+q*h[2])/(20*k*h[1]+20*k*h[2]+h[1]*h[2])

(4)

ics2 := -k*(D(T))(0) = h[1]*(T[inf1]-T(0)), -k*(D(T))(L) = h[2]*(T(L)-T[inf2])

-k*(D(T))(0) = h[1]*(T[inf1]-T(0)), -k*(D(T))(L) = h[2]*(T(L)-T[inf2])

(5)

dsolve({ics2, ode})

Error, (in dsolve) found differentiated functions with same name but depending on different arguments in the given DE system: {T(L), T(x)}

 

``

Download ExactSol.mw

hi. i want to improve my integration calculation speed, it takes me hours to calculate the results for even N=8. but i want for much more N's such as 20 30. can calculation speed improve? thanks in advance

Download M.mw

i have a problem in an optimzation problem. in the problem using NLPSolve to find the minimum, i have an integration which i use the Int command to be solved in the optimization process, but this error occures: Error, (in Optimization:-NLPSolve) could not store Int(..) in a floating-point rtable 
please help to solve the problem, tnx in advance

restart:with(LinearAlgebra):

N:=3:

m:=Vector([ 1 , log(x+b3) , b2/(x+b3) ]):

A:=m.m^+:

for i to N do
m||i:=eval(A,[x=x||i]);
od:

M:=add(w||i*m||i,i=1..N-1)+(1-add(w||i,i=1..N-1))*m||N:

MM:=( LinearAlgebra:-Trace(MatrixInverse(M)) ):

IF1:=evalf(Int(MM,[b2=1..2,b3=1..2],method = _d01ajc,epsilon=0.001)):

s:= Optimization:-NLPSolve(IF1,w1=0..1,w2=0..1,x1=1..10,x2=1..10,x3=1..10,variables=[w1,w2,x1,x2,x3],initialpoint={w1=0.6,w2=.1,x1=8,x2=7,x3=5},maximize=false,method=modifiednewton)

Error, (in Optimization:-NLPSolve) could not store Int(Int(16.6666666666666679*(-448.000000000000057*ln(7.+b3)*ln(5.+b3)+76.1999999999999886*ln(8.+b3)^2*b3^2+.199999999999999956*ln(8.+b3)^2*b3^4+.399999999999999911*ln(5.+b3)^2*b3^4+527.500000000000000*ln(5.+b3)^2+780.799999999999727*ln(8.+b3)^2+191.100000000000023*ln(7.+b3)^2+89.0999999999999943*ln(5.+b3)^2*b3^2+9.79999999999999893*ln(5.+b3)^2*b3^3+6.39999999999999858*ln(8.+b3)^2*b3^3+400.*ln(8.+b3)^2*b3+12.3000000000000025*ln(7.+b3)^2*b3^2+84.0000000000000142*ln(7.+b3)^2*b3+356.*ln(5.+b3)^2*b3+.600000000000000089*ln(7.+b3)^2*b3^3-1176.*ln(8.+b3)*ln(5.+b3)+280.*ln(8.+b ... 99999999999716*ln(7.+b3)*ln(5.+b3))^2), b2 = 1. .. 2.), b3 = 1. .. 2.) in a floating-point rtable

 

 

Download LinearLog-A-Bayesian_1.mw

how can i get this pde solved ( numeric or analytical)
 

restart

pde__1 := diff(z(x, t), `$`(t, 2))-(diff(z(x, t), `$`(x, 2)))+z(x, t)^2 = 6*x*t*(-t^2+x^2)+x^6*t^6

diff(diff(z(x, t), t), t)-(diff(diff(z(x, t), x), x))+z(x, t)^2 = 6*x*t*(-t^2+x^2)+x^6*t^6

(1)

conds__1 := z(x, 0) = 0, z(0, t) = 0, z(1, t) = t^3

pdsolve([pde__1, conds__1])

``

NULL


 

Download pde.mw

1 2 3 4 5 6 7 Last Page 3 of 25