momoklala

10 Reputation

One Badge

10 years, 49 days

MaplePrimes Activity


These are questions asked by momoklala

restart;

with(plots);

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M^2*(diff(f(eta), eta))+B(f(eta)*(diff(f(eta), eta, eta))*(diff(f(eta), eta))-f(eta)^2*(diff(f(eta), eta, eta, eta))) = 0;

Eq2 := (diff(theta(eta), eta, eta))/Pr+f(eta)*(diff(theta(eta), eta))-2*(diff(f(eta), eta))*theta(eta) = 0;

Pr := 1

M := 1

S := 0

epsilon := 1

blt := 10

bcs1 := f(0) = S, (D(f))(0) = epsilon, (D(f))(blt) = 0;

bcs2 := theta(0) = 1, theta(blt) = 0;

L := [0, .2, .4, .6, .8, 1.2];

for k to 6 do R := dsolve(eval({Eq1, Eq2, bcs1, bcs2}, B = L[k]), [f(eta), theta(eta)], numeric, output = listprocedure); X1 || k := rhs(R[3]); X2 || k := rhs(R[4]); Y1 || k := rhs(R[5]); Y2 || k := -rhs(R[6]) end do:

print([(X2 || (1 .. 6))(0)])


> restart;
> with*plots;
> Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2 = 0; 

> N := 1;

> blt := 10;
> Eq2 := (diff(theta(eta), eta, eta))/Pr+f(eta)*(diff(theta(eta), eta)) = 0; 
> bcs1 := f(0) = 0, (D(f))(0) = 1, (D(f))(blt) = 0;
> bcs2 := (D(theta))(0) = -N*(1+theta(0)), theta(blt) = 0;
> L := [2.5, 3, 5, 7, 10];
> for k to 5 do R := dsolve(eval({Eq1, Eq2, bcs1, bcs2}, Pr = L[k]), [f(eta), theta(eta)], numeric, output = listprocedure); X1 || k := rhs(R[3]); X2 || k := rhs(R[4]); Y1 || k := rhs(R[5]); Y2 || k := -rhs(R[6]) end do;

 

 how I will draw the graph for Pr against theta   for Pr=2.5 until 7  taking rest of the parameter fix

 

Page 1 of 1