pallav

65 Reputation

5 Badges

12 years, 226 days

MaplePrimes Activity


These are questions asked by pallav

Suppose I have to solve _Z^2 + (epsilon - 1)*_Z - epsilon + theta=0. If I use the code

solve(_Z^2 + (epsilon - 1)*_Z - epsilon + theta, _Z)

I get the solutions  as -epsilon/2 + 1/2 + sqrt(epsilon^2 + 2*epsilon - 4*theta + 1)/2, -epsilon/2 + 1/2 - sqrt(epsilon^2 + 2*epsilon - 4*theta + 1)/2

But I need them as (1 - epsilon)/2 + sqrt((epsilon + 1)^2 - 4*theta)/2, (1 - epsilon)/2 - sqrt((epsilon + 1)^2 - 4*theta)/2

How to modify the code so that I get the roots in the more simplified form, as I have mentioned above. 

Please help. 

I am unable to simplify a large expression using one given condition.

For example, suppose, I want to simplify the expression 

A=(20*a40*b10^2*b20 - 6*a50*b10^3)*a01^3 + ((-10*a11*a40 + 36*a21*a30)*b10^3 + (7*a11*a30*b20 - 30*a20^2*b21 - 9*a20*a30*b11)*b10^2 + (-12*a11*a20*b20^2 + 39*a20^2*b11*b20)*b10 + 15*b20^2*a11*a20*b11)*a01^2 + (-2*a11^2*a30*b10^3 + (27*a11^2*a20*b20 + 9*a11*a20^2*b11)*b10^2)*a01 + 18*a11^3*a20*b10^3

where it is given that a01*(a20*b20-a30*b10)+a11*a20*b11=0

Is there any way out to simplify A by reducing the number of terms in A? 

I need a proper solution. 

Is there any method to handle the huge expression of A where it is given that sigma+x=a, sigma*x=b

It is huge. I tryed with

B := mtaylor(A, [sigma, x], 8)

Unable to handle. I know that the expression can be written in powers in sigma^ix^j and thereafter sigma+x=a, sigma*x=b could be substituted..

Any help.

A := -sigma*(sigma^2+2*sigma*(alpha-1)+alpha*beta+1-alpha)*(alpha+sigma-1)^2*(sigma*theta+delta)*(gamma1*(alpha+sigma-1)+(1-sigma)*(beta+sigma))*alpha*(1-x)^2*(beta+x)^3*((theta*x+delta-gamma1)*(alpha+x-1)-(1-x)*(beta+x))+alpha*(1-sigma)^2*(beta+sigma)^3*((sigma*theta+delta-gamma1)*(alpha+sigma-1)-(1-sigma)*(beta+sigma))*x*(x^2+2*x*(alpha-1)+alpha*beta+1-alpha)*(alpha+x-1)^2*(theta*x+delta)*(gamma1*(alpha+x-1)+(1-x)*(beta+x))

-sigma*(sigma^2+2*sigma*(alpha-1)+alpha*beta+1-alpha)*(alpha+sigma-1)^2*(sigma*theta+delta)*(gamma1*(alpha+sigma-1)+(1-sigma)*(beta+sigma))*alpha*(1-x)^2*(beta+x)^3*((theta*x+delta-gamma1)*(alpha+x-1)-(1-x)*(beta+x))+alpha*(1-sigma)^2*(beta+sigma)^3*((sigma*theta+delta-gamma1)*(alpha+sigma-1)-(1-sigma)*(beta+sigma))*x*(x^2+2*x*(alpha-1)+alpha*beta+1-alpha)*(alpha+x-1)^2*(theta*x+delta)*(gamma1*(alpha+x-1)+(1-x)*(beta+x))

(1)

NULL``

``

Download 1.mw1.mw

How to write a_{01} in Maple

a[1]

a[1]

(1)

``

a[01] makes a_1. It mates a[01] - a[1] =0. However, a[0] becomes a_0. What to do? I want to write in maple in such that LaTeX conversion works good.

For a single variable function, I can expand the function 

series(x/(1−x−x^2),x,4);

and get the expansion upto order 4 term.

What shall I do if the function is two variable like f(x,y)=xy/(y−x*sqrt(y)−x^2) and intended to keep terms upto order 5, or moreseries.mw

series(x/(-x^2-x+1), x, 4)

series(x+x^2+2*x^3+O(x^4),x,4)

(1)

series(series(x*y/(1-x*sqrt(y)-x^2), x, 8), y, 4)

O(x^8)+(x^7+x^5+x^3+x)*y+(3*x^6+2*x^4+x^2)*y^(3/2)+(6*x^7+3*x^5+x^3)*y^2+(4*x^6+x^4)*y^(5/2)+(5*x^7+x^5)*y^3+x^6*y^(7/2)+O(y^4)

(2)

``

Download series.mw

say.

My attempt failed as (x^7 + x^5 + x^3 + x)*y etc contains O(8) terms x^7.y

Please help. 

1 2 3 4 Page 1 of 4