rrbaldino

55 Reputation

4 Badges

11 years, 303 days

MaplePrimes Activity


These are questions asked by rrbaldino

How do I convince MAPLE to simplify this Euclidean norm? > (D[1](P))(rho, theta, phi); Vector[column](%id = 230612588) > Norm(%, 2); / 2 2 2\ \|cos(phi) sin(theta)| + |sin(phi) sin(theta)| + |cos(theta)| /^ (1/2) > simplify(%, trig); / 2 2 2\ \|cos(phi) sin(theta)| + |sin(phi) sin(theta)| + |cos(theta)| /^ (1/2)

> restart; with(VectorCalculus);
> P := proc (rho, theta, phi) options operator, arrow; `<,>`(rho*cos(phi)*sin(theta), rho*sin(phi)*sin(theta), rho*cos(theta)) end proc;
> r[1] := proc (t) options operator, arrow; P(2, (1/2)*Pi, t) end proc;
> F := VectorField(`<,>`(x, VectorCalculus[`+`](y, R), z), coords = cartesian[x, y, z]);
> F[1] := evalVF(F, r[1](t));
                Vector[column](%id = 255051836)
> F[1] := evalVF(F, r[1](t));
Error, invalid input: VectorCalculus:-evalVF expects its 1st argument, F, to be of type {procedure, Vector(algebraic)}, but received Vector(3, {(1) = Vector(3, {(1) = 2*cos(t), (2) = 2*sin(t)+R, (3) = 0}, attributes = [space = (module () local _origin, _coords, _coords_dim; export GetCoordinates, GetRootPoint, Vector; end module)]), (2) = y+R, (3) = z}, attributes = [vectorfield, coords = cartesian[x, y, z]])

 

Spherical coordinates in electrical engineering are rho theta phi meaning distance, zenith and azimuth

making a righ-handed trihedron

In MAPLE I find a left-handed trihedron.

Can I change the order of coordinates?

I have double indexed functiions f[j,k] of one variable and double indexed coefficients a[j,k].

I want my print do look like a[1,1]f11+a[1,2]f12 that is, the values of a[j,k] should appear beside the functions' names, like

7f11+2f12-3f21 etc.

Thank yopu for any help

into the "Ask a Question" window?

Nothing to add

Actually I want to ask something else.

 

 

1 2 3 Page 2 of 3