shakuntala

25 Reputation

4 Badges

8 years, 279 days

MaplePrimes Activity


These are questions asked by shakuntala

> restart;
> with(plots);
> pr := .72; p := 0; n := 1; s := 1; a := [-0.5,0.0,0.5]; b := 1;
> R1 := 2*n/(n+1);
                                      1
> R2 := 2*p/(n+1);
                                      0
>
>
> for j to nops(a) do R1 := 2*n/(n+1); R2 := 2*p/(n+1); sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2) = 0, diff(diff(theta(eta), eta), eta)+pr*s^f(eta)*(diff(theta(eta), eta))+R2*pr*s*(diff(f(eta), eta))*theta(eta)+2*(a[j]*(diff(f(eta), eta))+b*theta(eta))/(n+1) = 0, f(-.5) = 0, (D(f))(0) = 1+b*((D@@2)(f))(0), (D(f))(5) = 0, theta(-.5) = 1+s*(D(theta))(0), theta(5) = 0], numeric, method = bvp); fplt[j] := plots[odeplot](sol1, [eta, diff(diff(f(eta), eta), eta)], color = ["blue", "black", "orange"]); tplt[j] := plots[odeplot](sol1, [eta, theta(eta)], color = setcolors(["red", "Coral"])) end do;
Error, (in dsolve/numeric/process_input) boundary conditions specified at too many points: {0, 5, -1/2}, can only solve two-point boundary value problems
>
> plots:-display([seq(fplt[j], j = 1 .. nops(a))], color = [green, red]);

> plots:-display([seq(tplt[j], j = 1 .. nops(a))], color = [green, red]);

 

Dear sir,

In this program i m not getting the solution for decimal values and i do not have idea about the how to set different color for multiple lines(i tried for different set of colors but it shows that only for first color )

> restart;
> with(plots);
> setoptions(title = `Family Plot`, axes = boxed);
> pr := .71; n := 1; p := 0; q := 0; b := 0; l := 0; s := 0; m := 0;
>
>
> R1 := 2.*n/(1+n);
                                 1.000000000
> R2 := 2.*p/(1+n);
                                     0.
> sol1 := dsolve([diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))+R1*(1-(diff(f(eta), eta))^2) = 0, diff(diff(theta(eta), eta), eta)+.71*f(eta)*(diff(theta(eta), eta))-.71*(diff(f(eta), eta))*theta(eta)*R2 = 0, f(0) = 0, (D(f))(0) = 1.8+b*((D@@2)(f))(0), (D(f))(18) = 0, theta(0) = 1+s*(D(theta))(0), theta(18) = 0], numeric, method = bvp[midrich]); plots[odeplot](sol1, [eta, theta(eta)], color = red, axes = boxed);

Dear sir/madam

In my program i want to plot multiple lines for diffrent values of n, but i do not have such type of idea please can you help me.

 

 

Dear sir

 

I try the below program and it is not executing because of error and that error is " unable to match delimiters" 

Please can you varify it.

sol1 := dsolve([diff(diff(diff(f(eta),eta),eta),eta)+f(eta)*diff(diff(f(eta),eta),eta)+((2*n)/((n+1)))*(1-diff(f(eta),eta)^2) = 0, 1/(Pr) *diff(diff(theta(eta),eta),eta)+f(eta)*diff(theta(eta),eta)-((2*p)/((n+1)))diff(f(eta),eta)*theta(eta) = 0, f(0) = 0, D(f)(0) = 1+lambda*'@@'(D,2)(f)(0), D(f)(10) = 1, theta(0)=0, theta(0)=1+sigma*D(theta(0)),theta(10)=1], numeric, method = bvp);  plots[odeplot](sol1, [eta, `@@`(D,2)(f)(eta)], color = red,axes=boxed);

> restart;
> libname = [shootlib, libname];
> with(shoot);
Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received shoot
> with(plots);
Pr := 10; s = -.1; lambda := 0; Gr := 1.0; Gm := 1.0; beta := -1.20;
10
s = -0.1
0
1.0
1.0
-1.20
> M := 0.; z := .1; Xi := .5; Nt := .5; Nb := .2; l := 5; Nr := .5; epsilon1 := .2; epsilon2 := .2;
0.
0.1
0.5
0.5
0.2
5
0.5
0.2
0.2
> Prff := Pr/(1+4.*N*(1/3));
10
-----------------
1 + 1.333333333 N
> FNS := {f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), `ϕ`(eta)};
{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}
> ODE := {diff(h(eta), eta)+.75*l*f(eta)*h(eta)-(1/4)*l*u(eta)*epsilon2-Nt*(.75*f(eta)*r(eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta))/Nb = 0, .75*f(eta)*r(eta)+diff(r(eta), eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta) = 0, diff(v(eta), eta)+3*(f(eta)*v(eta)-u(eta)*u(eta))/(4*Pr)-(M+lambda)*u(eta)+theta(eta)-Nr*`ϕ`(eta) = 0, diff(f(eta), eta) = u(eta), diff(u(eta), eta) = v(eta), diff(theta(eta), eta) = r(eta), diff(`ϕ`(eta), eta) = h(eta)};
/ / d \
{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }
deta /
> IC := {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0), theta(0) = 1-(1/4)*epsilon1, `ϕ`(0) = (1/4)*epsilon2};
{f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0),

theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}
> L := 2;
2
> BC = {u(L) = 0, theta(L) = 0, `ϕ`(L) = 0};
BC = {u(2) = 0, theta(2) = 0, ϕ(2) = 0}
> S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]);
/ / / d \
Shoot|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0,
deta /

v(0) = alpha(0), theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}, BC,

{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}, [

alpha = 0.42453091564332, tau = -0.21166705749821127,

\
xi = -0.4944583739651814]|
/
RungeKutta(ODE, BC, alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814, output=plot);
/ / / d \
RungeKutta|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, BC, alpha = 0.42453091564332,
deta /

\
tau = -0.21166705749821127, xi = -0.4944583739651814, output = plot|
/
>

 

 

Dear sir 

in the above problem im geiitng the problem with , with(shoot) command and even it is not executing at

S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]) this command, here alpha,tau and zi variable should change.

> restart;
> with(plots);
> Eql := diff(f(eta), eta, eta, eta)+.5*f(eta)*(diff(f(eta), eta, eta)) = 0;
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + 0.5 f(eta) |----- |----- f(eta)|| = 0
\ deta \ deta \ deta /// \ deta \ deta //
> blt := 10;
10
> bcs1 := f(0) = f0, (D(f))(0) = 0, (D(f))(blt) = 1;
f(0) = f0, D(f)(0) = 0, D(f)(10) = 1
> L := [0];
[0]
> for k to 1 do R := dsolve(eval({Eql, bcs1}, f0 = L[k]), f(eta), numeric, output = listprocedure); X1 || k := rhs(R[3]); X2 || k := rhs(R[4]) end do;
[
[eta = proc(eta) ... end;, f(eta) = proc(eta) ... end;,
[

d
----- f(eta) = proc(eta) ... end;,
deta

d / d \ ]
----- |----- f(eta)| = proc(eta) ... end;]
deta \ deta / ]
proc(eta) ... end;
proc(eta) ... end;
> print([X2], [1 .. 1, 0]);

 

dear sir/madam

 

in the above problem i should get the asnser (at print line) but its not getting so please can you tell me why it is not getting.

1 2 3 4 5 Page 5 of 5