sursumCorda

922 Reputation

13 Badges

2 years, 207 days

MaplePrimes Activity


These are questions asked by sursumCorda

Let y>1. It can be proved (maybe by hand) that the following four expressions are mathematically equivalent: 

assume(y > 1); # Assumption!
expr := [0, 0, 0, 0]: # Preallocation.
expr[1] := exp(y*LambertW(ln(y))):
expr[2] := (ln(y)/LambertW(ln(y)))^y:
expr[3] := eval(x^(x^x), x = exp(LambertW(ln(y)))):
expr[4] := eval(x^(x^x), x = ln(y)/LambertW(ln(y))):

But unfortunately, when I tried to simplify expri - exprj (symbolically), I just got: 

seq(seq(ifelse(j <> i, [i, j, verify(expr[j], expr[i], equal)], NULL), j = 1 .. numelems(expr)), i = 1 .. numelems(expr)); # is(expr[j] = expr[i]) does not work as well.
 = 
   [1, 2, FAIL], [1, 3, FAIL], [1, 4, FAIL], [2, 1, FAIL], 

     [2, 3, FAIL], [2, 4, FAIL], [3, 1, FAIL], [3, 2, FAIL], 

     [3, 4, true], [4, 1, FAIL], [4, 2, FAIL], [4, 3, true]


In other words, Maple can only determine that expr[3] = expr[4].
One may check that, for example, 

MmaTranslator:-Mma:-Chop([seq](seq(evalhf(subs(y = log10(rand()), expr[i] - expr[j])), j = 1 .. numelems(expr)), i = 1 .. numelems(expr)), 2^(-26));
 = 
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

However, the desired approach is simplifying them symbolically. Is there a way to do so in Maple?

In accordance with this statement obtained by Чебышёв (1853), each of 

simplify(int(x^(1/2)*(x^2 + 1)^(-3/4), x), symbolic);
simplify(int((x^(1)*(1 - x^2))^(1/3), x), symnolic);
simplify(int(x^(-1)*(x^6 + 1)^(-1/6), x), symnolic);
simplify(int(x^(17/2)*(x^2 + 1)^(1/4), x), symnolic);

can be reduced to an integral of rational functions, which can be expressed in terms of elementary functions. But it appears that Maple 2023.0 is still unable to completely calculate them. For instance: 
 

restart;

interface(version)

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

(1)

timelimit(0.1e4, `assuming`([simplify(int(x^(1/2)/(x^2+1)^(3/4), x))], [x > 0]))

(2/3)*x^(3/2)*hypergeom([3/4, 3/4], [7/4], -x^2)

(2)

timelimit(0.1e4, `assuming`([simplify(int((x*(-x^2+1))^(1/3), x))], [`or`(`and`(x <= 1, x >= 0), x <= -1)]))

(3/4)*x^(4/3)*hypergeom([-1/3, 2/3], [5/3], x^2)

(3)

timelimit(0.1e4, `assuming`([simplify(int(1/(x*(x^6+1)^(1/6)), x))], [x <> 0]))

-(1/36)*x^6*hypergeom([1, 1, 7/6], [2, 2], -x^6)-(1/12)*Pi*3^(1/2)-(1/3)*ln(2)-(1/4)*ln(3)+ln(x)

(4)

timelimit(0.1e4, `assuming`([simplify(int(x^(17/2)*(x^2+1)^(1/4), x))], [x > 0]))

(1/81920)*(8192*x^10*(x^2+1)^(1/4)+512*x^8*(x^2+1)^(1/4)-640*x^6*(x^2+1)^(1/4)+880*x^4*(x^2+1)^(1/4)-1155*ln(2*RootOf(_Z^2+1)*x^(1/2)*(x^2+1)^(3/4)-2*RootOf(_Z^2+1)*x^(3/2)*(x^2+1)^(1/4)+2*(x^2+1)^(1/2)*x-2*x^2-1)*x^(1/2)*RootOf(_Z^2+1)-1540*x^2*(x^2+1)^(1/4)-1155*x^(1/2)*ln(-2*x^(1/2)*(x^2+1)^(3/4)-2*x^(3/2)*(x^2+1)^(1/4)+2*(x^2+1)^(1/2)*x+2*x^2+1))/x^(1/2)

(5)

gc()


 

Download Chebyshev_theorem_on_the_integration_of_binomial_differentials.mw

However, closed-form (and readable) solutions in elementary forms exist (cf. Regression reports for Computer Algebra Independent Integration Tests. Summer 2022 version (12000.org)); in fact, Mathematica returns: 

So, why can't Maple find these compact antiderivatives (expressed by elementary functions) directly here? In other words, is there a way to resolve them in Maple without applying some change of the variable to these indefinite integrals manually?

The issue arises from solving the following ODEs in Maple (where a is a suitable real parameter): 

ode__1 := a*(diff(y(x), x) + 1)^2 + (y(x) - x)^2*diff(y(x), x) = 0: # dsolve(ode__1);
ode__4 := a*(x*diff(y(x), x) + y(x))^2 - (y(x) + x)^2*diff(y(x), x) = 0: # dsolve(ode__4);

However, dsolve cannot give fully simplified solutions, so I have to compute these unevaluated integrals (i.e., expr1) manually: (For the sake of completeness, I list some related ODEs below.) 
 

restart;

ode__1 := a*(diff(y(x), x)+1)^2+(y(x)-x)^2*(diff(y(x), x)) = 0
ode__4 := a*(x*(diff(y(x), x))+y(x))^2-(y(x)+x)^2*(diff(y(x), x)) = 0

dsolve(ode__1, y(x), explicit)

expr__1 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int(1/(z^2+(z^4+4*a*z^2)^(1/2)+4*a), z), Int(-1/(z^2-(z^4+4*a*z^2)^(1/2)+4*a), z)]

(1)

value(expr__1)

[(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))-4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2))), -(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))+(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))+(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2)))]

(2)

verify(diff([-z/(z^2+sqrt(z^2*(z^2+4*a))), z/(z^2-sqrt(z^2*(z^2+4*a)))], z), `~`[op](1, expr__1), simplify)

true

(3)

dsolve(ode__4, y(x), explicit)

expr__4 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int((z^2-4*a*z+(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)+2*z+1)/(z*(-4*a*z+z^2+2*z+1)), z), Int(-(z^2-4*a*z+2*z+1-((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2))/(z*(-4*a*z+z^2+2*z+1)), z)]

(4)

value(expr__4)

[(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))+ln(z), ((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))-ln(z)]

(5)

verify(diff([2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))+ln(z), 2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))-ln(z)], z), `~`[op](1, expr__4), simplify)

true

(6)

NULL


 

Download senseless_results_of_int.mw
 

restart;

ode__1 := a*(diff(y(x), x)+1)^2+(y(x)-x)^2*(diff(y(x), x)) = 0
ode__4 := a*(x*(diff(y(x), x))+y(x))^2-(y(x)+x)^2*(diff(y(x), x)) = 0

dsolve(ode__1, y(x), explicit)

expr__1 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int(1/(z^2+(z^4+4*a*z^2)^(1/2)+4*a), z), Int(-1/(z^2-(z^4+4*a*z^2)^(1/2)+4*a), z)]

(1)

value(expr__1)

[(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))-4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2))), -(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))+(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))+(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2)))]

(2)

verify(diff([-z/(z^2+sqrt(z^2*(z^2+4*a))), z/(z^2-sqrt(z^2*(z^2+4*a)))], z), `~`[op](1, expr__1), simplify)

true

(3)

dsolve(ode__4, y(x), explicit)

expr__4 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int((z^2-4*a*z+(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)+2*z+1)/(z*(-4*a*z+z^2+2*z+1)), z), Int(-(z^2-4*a*z+2*z+1-((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2))/(z*(-4*a*z+z^2+2*z+1)), z)]

(4)

value(expr__4)

[(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))+ln(z), ((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))-ln(z)]

(5)

verify(diff([2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))+ln(z), 2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))-ln(z)], z), `~`[op](1, expr__4), simplify)

true

(6)

NULL


 

Download senseless_results_of_int.mw

 

As you can see, the lengthy output of is nearly meaningless! (And if you want to simplify it, Maple will simply return: Error, (in simplify/recurse) indeterminate expression of the form 0/0.) So, how do I get the simplified results in Maple?
The integrals are: 

expr__1 := [Int(1/(z^2 + sqrt(z^4 + 4*a*z^2) + 4*a), z), Int(-1/(z^2 - sqrt(z^4 + 4*a*z^2) + 4*a), z)]: # (value(expr__1));
expr__4 := [Int((z^2 - 4*a*z + sqrt(-4*a*z^3 + z^4 - 8*a*z^2 + 4*z^3 - 4*a*z + 6*z^2 + 4*z + 1) + 2*z + 1)/(z*(-4*a*z + z^2 + 2*z + 1)), z), Int(-(z^2 - 4*a*z + 2*z + 1 - sqrt((-4*a*z + z^2 + 2*z + 1)*(z + 1)^2))/(z*(-4*a*z + z^2 + 2*z + 1)), z)]: # (value(expr__4)):

Note. By the way, Mma can solve the original ODEs directly and explicitly: 

In[1]:= DSolve[a*(y'[x]+1)^2+(y[x]-x)^2*y'[x]==0,y[x],x,IncludeSingularSolutions->Automatic]

                                   2                3                    2
                  a - x C[1] - C[1]             16 a  - 4 a x C[1] - C[1]
Out[1]= {{y[x] -> ------------------}, {y[x] -> --------------------------}}
                       x + C[1]                     4 a (4 a x + C[1])

In[2]:= DSolve[a*(x*y'[x]+y[x])^2-(y[x]+x)^2*y'[x]==0,y[x],x,IncludeSingularSolutions->Automatic]

                     2 a C[1]       2 a C[1]     2  2 a C[1]
                  a E         (-(a E        ) + a  E         + x)
Out[2]= {{y[x] -> -----------------------------------------------}, 
                                     2 a C[1]
                                  a E         - x
 
                2 a C[1]    2 a C[1]
               E         (-E         + 2 a x)
>    {y[x] -> --------------------------------}}
                    2 a C[1]              2
              2 a (E         - 2 a x + 2 a  x)

Unfortunately, Maple fails to do so.

The ODE is: 

eqn := y(x)*(2*x*diff(y(x), x) + y(x)*(diff(y(x), x)^2 - 1)) = -1: # How about another ODE 'lhs(eqn) = +1' ?

Maple can solve it, but I find that (to get all four solutions) I have to execute the dsolve command twice
 

restart;

eqn := y(x)*(2*x*(diff(y(x), x))+y(x)*((diff(y(x), x))^2-1)) = -1

dsolve(eqn, {y(x)}, 'parametric', 'singsol' = all)

y(x) = (c__1^2+2*c__1*x+1)^(1/2), y(x) = -(c__1^2+2*c__1*x+1)^(1/2)

(1)

dsolve(eqn, {y(x)}, 'singsol' = all)

y(x) = (-x^2+1)^(1/2), y(x) = -(-x^2+1)^(1/2), Int(-((_a^2+y(x)^2-1)^(1/2)*_a*y(x)^2-_a^2*y(x)^2-y(x)^4+2*_a^2+3*y(x)^2-2)/((y(x)^2+2*_a-2)*(-y(x)^2+2*_a+2)*(_a^2+y(x)^2-1)), _a = _b .. x)+Intat(-_f/(2*(_f^2+x^2-1)^(1/2)*x^2+(_f^2+x^2-1)^(1/2)*_f^2+2*x^3+2*x*_f^2-2*(_f^2+x^2-1)^(1/2)-2*x)-(Int(-(_a*_f^3/(_a^2+_f^2-1)^(1/2)+2*(_a^2+_f^2-1)^(1/2)*_a*_f-2*_a^2*_f-4*_f^3+6*_f)/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1))+2*((_a^2+_f^2-1)^(1/2)*_a*_f^2-_a^2*_f^2-_f^4+2*_a^2+3*_f^2-2)*_f/((_f^2+2*_a-2)^2*(-_f^2+2*_a+2)*(_a^2+_f^2-1))-2*((_a^2+_f^2-1)^(1/2)*_a*_f^2-_a^2*_f^2-_f^4+2*_a^2+3*_f^2-2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)^2*(_a^2+_f^2-1))+2*((_a^2+_f^2-1)^(1/2)*_a*_f^2-_a^2*_f^2-_f^4+2*_a^2+3*_f^2-2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1)^2), _a = _b .. x)), _f = y(x))+c__1 = 0, Int((_a^2*y(x)^2-2*_a^2+y(x)^4-3*y(x)^2+(_a^2+y(x)^2-1)^(1/2)*_a*y(x)^2+2)/((y(x)^2+2*_a-2)*(-y(x)^2+2*_a+2)*(_a^2+y(x)^2-1)), _a = _b .. x)+Intat(_f/(2*(_f^2+x^2-1)^(1/2)*x^2+(_f^2+x^2-1)^(1/2)*_f^2-2*x^3-2*x*_f^2-2*(_f^2+x^2-1)^(1/2)+2*x)-(Int((2*_a^2*_f+4*_f^3-6*_f+_a*_f^3/(_a^2+_f^2-1)^(1/2)+2*(_a^2+_f^2-1)^(1/2)*_a*_f)/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1))-2*(_a^2*_f^2-2*_a^2+_f^4-3*_f^2+(_a^2+_f^2-1)^(1/2)*_a*_f^2+2)*_f/((_f^2+2*_a-2)^2*(-_f^2+2*_a+2)*(_a^2+_f^2-1))+2*(_a^2*_f^2-2*_a^2+_f^4-3*_f^2+(_a^2+_f^2-1)^(1/2)*_a*_f^2+2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)^2*(_a^2+_f^2-1))-2*(_a^2*_f^2-2*_a^2+_f^4-3*_f^2+(_a^2+_f^2-1)^(1/2)*_a*_f^2+2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1)^2), _a = _b .. x)), _f = y(x))+c__1 = 0

(2)

NULL


 

Download dsolve_twice.mw

However, in MATLAB®, the complete solutions can be found just in one go

>> dsolve('y*(2*x*Dy + y*(Dy^2 - 1)) = -1', 'x') % require the Symbolic Math Toolbox™
ans =
                         1
                        -1
 -(-(x - 1)*(x + 1))^(1/2)
  (-(x - 1)*(x + 1))^(1/2)
 (C1^2 + 2*x*C1 + 1)^(1/2)
-(C1^2 + 2*x*C1 + 1)^(1/2)

Does anyone know why?

https://www.maplesoft.com/support/help/Maple/view.aspx?path=copyright lists some external packages used by Maple, but it appears that certain libraries are of outdated (albeit not obsolete) versions. For example, Maple 2023 uses FLINT 2.6.3 (released in 2020), but the newest stable version of FLINT is 2.9.0. Also, Maple 2023 uses Z3 4.5.0 (released in 2016), but the newest stable version of Z3 is 4.12.1. In addition, Maple 2023 uses GCC 10.2.0 (released in 2020), but the newest stable version of GCC is 13.1. Since they are distributed under free licenses, I can download the most recent (or even nightly) release's source code, but how can I replace the old components that Maple uses by the latest ones by myself?

First 10 11 12 13 14 15 16 Page 12 of 19