tsunamiBTP

292 Reputation

9 Badges

16 years, 302 days

MaplePrimes Activity


These are questions asked by tsunamiBTP

I originally posted this question @ Reconciling roots of a series  However, I got no responses.  I have done further work on the problem & attempted to delete my original posting to initiate this one.    I did not see the option to delete Reconciling roots of a series.  So if any website moderator can delete the original & leave this one stand that would be helpful.  The results in this posting are more illuminating.

I have an infinite series that is function of


                                   /2 Pi k x\
                               sin|--------|
                                     \   T    / where k is the frequency parameter that is an integer value from 1 to m.  The series is also linearly dependent on the coefficient, Ck.  However, Ck is nonlinear with respect to k.  3 other parameters are undefined, a0, N, & tau.  Taking the derivative of the series removes the constant a0 & the factor (2 Pi k)/T comes out of the sin term & the sin term bcomes a cos term.  N is a positive integer & tau is a real #, generally between 0 & 1.

The derivative of the series can be evaluated since Ck falls of by 1/k^2 which renders the factor (2 Pi k)/T to (2 Pi)/T.  All is well & MAPLE seems to confirm that by the result (5).  I then attempt to find the roots of the derivative after defining the values for m, a0, N, & tau with both the solveRootFinding:-Analytic commands.  The results from the 2 do not seem to coincide.

I then repeat the process with chek2.  Now there seems to be some overlap in the results.  But as I pointed out in Reconciling roots of a series in the case of chek the series parameters m, a0, N, & tau have not been assigned values.  In the case of chek2 those parameters do have assigned values; hence, the solution characteristics are different for the solve command, but not for RootFinding:-Analytic.

In a different problem, but somewhat related someone pointed out the superior computational performance of the RootFinding:-Analytic as opposed to the solve command.  The results here if I interpret them correctly suggest that the solve command can be WRONG altogether.  Can this be explained in a concise & coherent manner that most users can follow?  Also, solve can produce an analytic expression as opposed the RootFinding:-Analytic command.  Is there a way to use the RootFinding package to produce an analytical result?  In the case presented below I suppose the analytic result for solutions to chek would be JUNK?

reconcile_solns.mw

Does MAPLEPrimes or MAPLESoft host a discussion forum on mathematics in general?  I know this site generally supports troubleshooting & code application.  I have had a couple of instances where I have posted a question that gets no responses because the question may fall outside the perview or objectives of troubleshooting & code application.  Perhaps I should pose these questions elsewhere?

I employed the sort command to sort through 10 solutions to a series of order 10.  However, I do not follow the logic of the output.  So I attempted to sort by ascending order by the magnitude, but I am getting errors which I am having trouble circumnavigating.  Can show me how to sort my solutions properly?

The worksheet is in my reply below.

I have resolved the roots of a series both numerically & analytically.  Let me qualify numerical  versus analytical.  Analytically I evaluate the series without substituting values for the various parameters of the series.  I then differentiate the series, then substitute in the appropriate parametric values, & then solve.  By this method I obtained 5 complex roots.

The numerical approach has values already assigned to the parameters of the series.  I then differentiate & solve.  I obtain only REAL roots in this instance.  I then restricted these results to obtain the solution I believe to be correct given by result (7).

I cannot seem to steer the solver in the analytic case to obtain the correct REAL result that I am expecting.  Can anyone help on this?

Before any website moderator thinks this is the same question as Error-in-Isinternal-Too-Many-Levels, it is not.  I have resolved that question.  This is a different question, but on the same problem!

reconcile_solns.mw

Error, (in is/internal) too many levels of recursion

I get the error above when attempting to solve for the roots of partial derivative.  My results are below:


 

S3 := -(1/2*I)*(-(2*I)*exp(I*Pi*k*tau/T)*Pi*k-exp(I*Pi*k*tau/T)*T+I*exp(I*Pi*k*tau/T)*Pi*k*tau+(4*I)*Pi*k-(2*I)*exp(-I*Pi*k*tau/T)*Pi*k+exp(-I*Pi*k*tau/T)*T+I*exp(-I*Pi*k*tau/T)*Pi*k*tau)*sin(2*Pi*k*x/T)/(Pi^2*k^2)

S3 = ((-I)*(1/2))*((I*Pi*k*tau-(2*I)*Pi*k)*(exp(I*Pi*k*tau/T)+exp(-I*Pi*k*tau/T))-T*(exp(I*Pi*k*tau/T)-exp(-I*Pi*k*tau/T))+(4*I)*Pi*k)*sin(2*Pi*k*x/T)/(Pi^2*k^2)
"(->)"true"(->)"true

Despite the the simplifications MAPLE generated above MAPLE does not recognize the expressions as being equivalent.  So set the following for the Fourier coeffs:NULL

Ck := (-I*((2*(I*Pi*k*tau-(2*I)*Pi*k))*cos(Pi*k*tau/T)-(2*I)*T*sin(Pi*k*tau/T)+(4*I)*Pi*k))*(1/(2*Pi^2*k^2))

-((1/2)*I)*(2*(I*Pi*k*tau-(2*I)*Pi*k)*cos(Pi*k*tau/T)-(2*I)*T*sin(Pi*k*tau/T)+(4*I)*Pi*k)/(Pi^2*k^2)

(1)

The Fourier series can now be expressed as a 1 sided series employing both the Sum vs sum vs add commands for comparison:``

T0 := kernelopts(cputime), time(), time[real]();

204175839, 9435456, 8.998352053

(2)

S7 := a[0]+Sum(Ck*sin(2*Pi*k*x/T), k = 1 .. m):

1600991, 0, 0.

(3)

solve([diff(S5, x) = 0, 0 < x, x < 10*T/(2*Pi*m)], x)

Error, (in is/internal) too many levels of recursion

 

solve([diff(S5, x) = 0, 0 < x, x < 1/8], x)

Error, (in is/internal) too many levels of recursion

 

``


 

Download 2_many_levels_of_recursion.mw

1 2 3 4 5 6 7 Last Page 2 of 16