vv

12453 Reputation

19 Badges

9 years, 284 days

MaplePrimes Activity


These are answers submitted by vv

Definitely the error is due to your "..." (not shown).

You may have used it incorrectly, but Groebner solves at once your problem.

sys:=O1*O3*f7-f1, O1*O3*f1-f7, O1*O3*f8-f2, O1*O3*f2-f8, O1*O3*f5-f3, O1*O3*f3-f5, O1*O3*f6-f4, O1*O3*f4-f6, O1*O4*f8-f1, O1*O4*f1-f8, O1*O4*f7-f2, O1*O4*f2-f7, O1*O4*f6-f3, O1*O4*f3-f6, O1*O4*f5-f4, O1*O4*f4-f5, O1*O2*O3*f6-f1, O1*O2*O3*f1-f6, O1*O2*O3*f5-f2, O1*O2*O3*f2-f5, O1*O2*O3*f8-f3, O1*O2*O3*f3-f8, O1*O2*O3*f7-f4, O1*O2*O3*f4-f7, O1*O2*O4*f5-f1, O1*O2*O4*f1-f5, O1*O2*O4*f6-f2, O1*O2*O4*f2-f6, O1*O2*O4*f7-f3, O1*O2*O4*f3-f7, O1*O2*O4*f8-f4, O1*O2*O4*f4-f8:

oo:=O1^2-1,O2^2-1,O3^2-1,O4^2-1:

Groebner[Basis]([sys,oo], plex(f1, f2, f3, f4, f5, f6, f7, f8,  O1, O2, O3, O4)):
select(has,%,[seq(f||i,i=1..8)]);

 

Maybe they used Mathematica. 

[ just wanted to be malicious :-) ]

Edit. More seriously, using some vector letters (as polygons)

 

You may solve eqs wrt all the variables:

eqs := {x - a*y,y - a*x}:
solve(eqs);

 

 

n:=3:
Matrix(combinat[permute]( [-1$n, 1$n], n) );

seq(x||i,i=1..200);

You probably mean:

xn:=n^2/(n^2+31*n+228):

x0:=limit(xn,n=infinity);
     1
asympt(xn-x0,n,2):
r:=abs(convert(%,polynom)) assuming n>0:
solve(r<eps/2, n, useassumptions) assuming n>0,eps>0:
N:=lhs(%[]);

is( abs(xn-x0)<eps ) assuming eps>0, n>=N;

       true

# For integer N, take  N := floor(N)+1

So, you have a homogeneous linear system of ODEs with constant coefficients.
If you know a fundamental system for the solutions:

exp(p*t), exp(q*t), ...

where p,q, ... are distinct complex numbers
then the characteristic polynomial in variable y is

(y - p)(y - q) ...

[if there are multiple roots, the situation is a bit more complicated]

Note that c(t) = 0 cannot appear in a fundamental system
(because of the linear independence).

indets(eq,anyfunc(identical(t)));

If you must use fsolve, try to restrict the domain.

fsolve({f, g}, {a, c}, a = 10000 .. infinity, c = 0 .. infinity);

Edit.
1. You may use
plots[implicitplot]([f,g], a=-20..20,c=-20..20,color=[red,blue]);
to localize the roots
2. The system seems to be intentionally constructed to have "non-intuitive" solutions.

Yes, obviously for the ics case Maple "forgot" the BesselJ term .

M := diff(T(r), r, r)+(diff(T(r), r))/r+u*T(r)+P*(r^4+r^2) = 0; # u includes the constant

M0 := {M, D(T)(0)=0}:
s:=dsolve(M);

s0:=dsolve(M0);


s0general:=T(r)=BesselJ(0, sqrt(u)*r)*_C2-P*(r^4*u^2+r^2*u^2-16*r^2*u-4*u+64)/u^3;

odetest(s, M);
                             
  0
odetest(s0, M0);
                             
{0}
odetest(s0general, M0);
                             
{0}

Edit. If another ics is added e.g.
M01 := {M, D(T)(0)=0, T(0)=a};
then BesselJ appears!

 

 

B:=Groebner[Basis]([x-v, y-v^2], plex(u,v,x,y)):
remove(has,B,[u,v]);

 

Here is an ad-hoc procedure.

flatt:=proc(L::{list,set})
  local a,n; a:=L; n:=-1;
  while nops(a)<>n do
    n:=nops(a);
    a:=map(x->`if`(type(x,{list,set}),op(x),x),a);
  od;
  op(a)
end:

flatt([1,2,3, {4,5,6}]);



 

 

ex:=-Omega*a*sqrt(2)*sqrt(-Omega^2*a^2-2*k*m+sqrt(Omega^2*a^2*(Omega^2*a^2+4*k*m)))/(-Omega^2*a^2+sqrt(Omega^2*a^2*(Omega^2*a^2+4*k*m))):

radnormal(ex^2);
      -1

So, ex = I or -I
Note that both values may appear, depending on the parameters: e.g. changing a to -a  ==> ex to -ex
ex = I for  e.g. Omega=1, a=2, k=-1, m=1.

Edit. As Markiyan has pointed out, OP says Omega, a, k, m are >0. (I did not see this because the horizontal scroll was absent in my browser). But in this case it is easy to see that ex = -I. In fact, the denominator is obviously >0,  so

must be <0 (because ex^2=-1).

It follows that the argument of ex is - Pi/2 ==> ex = - I.


 

 

The solution for your ODEs is very oscillatory.
Maple can easily find a series solution, but it will be almost useless.
I think that the solution itself would be useless if found.

Please look at the following similar simple example:

Digits:=30: Order:=10:
a:=10^6:
s1:=dsolve({diff(y(t),t)=cos(a*t)*y(t), y(0)=1}, y(t), series):
s2:=dsolve({diff(y(t),t)=cos(a*t)*y(t), y(0)=1}, y(t)):
ss1:=convert(rhs(s1),polynom);


ss2:=rhs(s2); #exact

plot(ss2, t=0..1);  #exact

 

plot( ss1, t=0..1); #series

 

 

 

First 101 102 103 104 105 106 107 Last Page 103 of 111