vv

12453 Reputation

19 Badges

9 years, 282 days

MaplePrimes Activity


These are answers submitted by vv

--  IsZero works for lists too by design
-- HasZero returns false if the argument is not a rtable (and not identical 0) by design
-- AllNonZero returns true if the argument is a list because it returns  not HasZero. Really oversight. 

A simple (but not very efficient) way.

with(GraphTheory):
n := 4: degrees:=[1,2,2,3]:
L:=NonIsomorphicGraphs(n, output=graphs, outputform=adjacency):
map(proc(u) local g:=Graph(u),d:=sort(Degree(g)); `if`(d=degrees,g,NULL) end, [L]);

[GRAPHLN(undirected, unweighted, [1, 2, 3, 4], Array(1..4, {(1) = {4}, (2) = {3, 4}, (3) = {2, 4}, (4) = {1, 2, 3}}), `GRAPHLN/table/8`, 0)]

(1)

print~(DrawGraph~(%))[];

 

 

eq:=x^3 - 3*x^2 + 3*x - 1=0;
op~(solve(eq,[x]))[];

 

If you want the book result (i.e. a submatrix of A) then call LinearAlgebra:-Basis with the list of the column vectors of A.

eq:=(2*x+a^2-3*a)=a*(x-1):
solve(eq,x, parametric);

           

IsElementary:=proc(A::Matrix(square))
  local Z:=rtable_elems(A-1), ij;
  if   nops(Z)=1 then true 
  elif nops(Z)<>4 then false
  elif nops((ij:=lhs~(Z)))=2 and Z = {(ij[])=1, (ij[2],ij[1])=1, (ij[1]$2)=-1, (ij[2]$2)=-1} then true else false fi
end;

 

It's too simple to find a bug here. You must add +Pi

f:=-Pi/2 - arctan(25*x) - Pi + 2*Pi/3:
solve(f,x);
eval(f, x= 1/(25*sqrt(3)) );
solve(f+Pi, x); 
evalf(%) = fsolve(f+Pi,x);

 

with(Statistics):

X1 := RandomVariable(Uniform(0,1)): X2 := RandomVariable(Uniform(0,1)):
Y1 := RandomVariable(Uniform(0,1)): Y2 := RandomVariable(Uniform(0,1)):
Dist := sqrt((X1-X2)^2+(Y1-Y2)^2):

f := simplify(PDF(Dist, t));
F := simplify(CDF(Dist, t));

f := -2*t*piecewise(t <= 0, 0, t <= 1, -t^2-Pi+4*t, t <= sqrt(2), (sqrt(t^2-1)*t^2+2*sqrt(t^2-1)*arcsin((t^2-2)/t^2)-4*t^2+2*sqrt(t^2-1)+4)/sqrt(t^2-1), sqrt(2) < t, 0)

 

(1/6)*piecewise(t <= 0, 0, t <= 1, t^2*(3*t^2+6*Pi-16*t), t < 2^(1/2), -12*t^2*arcsin((t^2-2)/t^2)+((-3*t^4-12*t^2+2)*(t^2-1)^(1/2)+16*t^4-8*t^2-8)/(t^2-1)^(1/2), 2^(1/2) <= t, 6)

(1)

plot([f,F], t=0..3);

 

 

Distribution function for the distance between two uniformly distributed random points in the unit square

restart;

 

The density for |x-y|^2 in the unit interval

 

int(piecewise( (x-y)^2<t, 1, 0), [x=0..1,y=0..1]) assuming t>0:

f1 := unapply(simplify(diff(%, t)), t) assuming t>0;

f1 := proc (t) options operator, arrow; piecewise(t <= 1, -(sqrt(t)-1)/sqrt(t), 1 < t, 0) end proc

(1)

 

The density for ||x-y||^2 in the unit square

 

simplify(int( f1(s)*f1(t-s),s=0..t)) assuming t>0:
f2:=unapply(piecewise(t>0,%,0), t);

f2 := proc (t) options operator, arrow; piecewise(0 < t, piecewise(t < 1, Pi-4*sqrt(t)+t, t < 2, -t+4*sqrt(t-1)-2*arcsin((-2+t)/t)-2, 2 <= t, 0), 0) end proc

(2)

 

The cdf for ||x-y||^2  in the unit square

 

simplify(int(f2(s), s=0..t)) assuming t>0:
F2:= unapply(%, t);

F2 := proc (t) options operator, arrow; (1/6)*piecewise(t < 1, -16*t^(3/2)+6*t*Pi+3*t^2, t < 2, -12*arcsin((-2+t)/t)*t+(16*t+8)*sqrt(t-1)-3*t^2-12*t+2, 2 <= t, 6) end proc

(3)

 

The cdf and pdf  for  ||x-y|| in the unit square

 

simplify(F2(t^2)) assuming t>0:
F := unapply(%, t) assuming t>0;
simplify( diff(F2(t^2),t) ) assuming t>0:
f:=unapply(%, t);

F := proc (t) options operator, arrow; (1/6)*piecewise(t < 1, t^2*(3*t^2+6*Pi-16*t), t < sqrt(2), -3*t^4-12*arcsin((t^2-2)/t^2)*t^2+16*sqrt(t^2-1)*t^2-12*t^2+8*sqrt(t^2-1)+2, sqrt(2) <= t, 6) end proc

 

proc (t) options operator, arrow; -2*t*piecewise(t <= 1, -t^2-Pi+4*t, t <= 2^(1/2), ((t^2-1)^(1/2)*t^2+2*arcsin((t^2-2)/t^2)*(t^2-1)^(1/2)-4*t^2+2*(t^2-1)^(1/2)+4)/(t^2-1)^(1/2), 2^(1/2) < t, 0) end proc

(4)

plot(f, 0..2, title="pdf for the distance between 2 points in I^2");

 

plot(F, 0..3, title="cdf for the distance between 2 points in I^2");

 

Note. Unfortunately Maple 2020 fails in computing the quadruple integral needed for a direct solution.

Download dist-points-vv.mw

You forgot a multiplication sign * after omega__n
expand(EXPR)
works without any assumption.

Just use the Constraints to eliminate variables.

restart:
local gamma:

SYS := dlogR[i, r] = sum(sum(rho[j, u]*pi[i, j, r, F]*(-epsilon[r]*sum(pi[k, j, r, F]*((dlogR[i, r] - dlogR[k, r]) + (-`dlog&delta;`[i, r] + `dlog&delta;`[k, r])), k = 1 .. J) + dlogR[j, u]), u = 1 .. S), j = 1 .. J)/rho[i, r];

dlogR[i, r] = (sum(sum(rho[j, u]*pi[i, j, r, F]*(-epsilon[r]*(sum(pi[k, j, r, F]*(dlogR[i, r]-dlogR[k, r]-`dlog&delta;`[i, r]+`dlog&delta;`[k, r]), k = 1 .. J))+dlogR[j, u]), u = 1 .. S), j = 1 .. J))/rho[i, r]

(1)

EQ:=[seq( eval(SYS, [J = 3, S = 1,r = 1]), i=1..3)]:

indets(EQ):

X:=select( u -> evalb(convert(u,string)[1..5]="dlogR"), %);

{dlogR[1, 1], dlogR[2, 1], dlogR[3, 1]}

(2)

Cons := {seq(seq(add(pi[i, j, r, F], i = 1..3) = 1, j = 1..3), r = 1..1)}

{pi[1, 1, 1, F]+pi[2, 1, 1, F]+pi[3, 1, 1, F] = 1, pi[1, 2, 1, F]+pi[2, 2, 1, F]+pi[3, 2, 1, F] = 1, pi[1, 3, 1, F]+pi[2, 3, 1, F]+pi[3, 3, 1, F] = 1}

(3)

CONS:= solve(Cons, select(u -> (op(1,u)=3),  indets(Cons)));

{pi[3, 1, 1, F] = -pi[1, 1, 1, F]-pi[2, 1, 1, F]+1, pi[3, 2, 1, F] = -pi[1, 2, 1, F]-pi[2, 2, 1, F]+1, pi[3, 3, 1, F] = -pi[1, 3, 1, F]-pi[2, 3, 1, F]+1}

(4)

EQIND:=eval(EQ,CONS):

SOL:=simplify(solve(EQIND,X)):

SOL[1]; SOL[2]; SOL[3];

dlogR[1, 1] = ((`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+(((-pi[2, 1, 1, F]^2+pi[2, 1, 1, F])*pi[1, 2, 1, F]^2+(2*pi[1, 1, 1, F]*pi[2, 1, 1, F]*pi[2, 2, 1, F]+pi[2, 1, 1, F]^2-pi[2, 1, 1, F])*pi[1, 2, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1]-((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 2, 1, F]^2+(-2*pi[1, 3, 1, F]*pi[2, 2, 1, F]*pi[2, 3, 1, F]-pi[2, 3, 1, F]^2+pi[2, 3, 1, F])*pi[1, 2, 1, F]+pi[2, 2, 1, F]*pi[1, 3, 1, F]*(pi[1, 3, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[3, 1])*rho[2, 1]+pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2-rho[3, 1]*((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 1, 1, F]^2-pi[2, 3, 1, F]*(2*pi[1, 3, 1, F]*pi[2, 1, 1, F]+pi[2, 3, 1, F]-1)*pi[1, 1, 1, F]+pi[2, 1, 1, F]*pi[1, 3, 1, F]*(pi[2, 1, 1, F]-1)*(pi[1, 3, 1, F]-1))*rho[1, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[1, 2, 1, F]*(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+((pi[2, 1, 1, F]*((`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 1, 1, F]+(pi[2, 1, 1, F]-1)*(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1]))*pi[1, 2, 1, F]-((`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 1, 1, F]+(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 1, 1, F]-`dlog&delta;`[1, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*(pi[2, 2, 1, F]-1)*pi[1, 1, 1, F])*rho[1, 1]+(-(pi[2, 2, 1, F]*dlogR[3, 1]+(-`dlog&delta;`[1, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*pi[1, 3, 1, F]-(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 3, 1, F]-1))*pi[2, 3, 1, F]*pi[1, 2, 1, F]+(pi[2, 2, 1, F]*dlogR[3, 1]+(-`dlog&delta;`[1, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*pi[1, 3, 1, F]+(-`dlog&delta;`[2, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1])*pi[2, 3, 1, F]+`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[2, 2, 1, F]-1)*pi[1, 3, 1, F])*rho[3, 1])*rho[2, 1]-(pi[2, 1, 1, F]*(pi[2, 3, 1, F]*pi[1, 1, 1, F]-pi[1, 3, 1, F]*(pi[2, 1, 1, F]-1))*rho[1, 1]+pi[2, 3, 1, F]*rho[3, 1]*pi[1, 3, 1, F])*dlogR[3, 1]*rho[3, 1])*epsilon[1]+rho[2, 1]*dlogR[3, 1]*(-pi[2, 3, 1, F]*pi[1, 2, 1, F]+pi[1, 3, 1, F]*(pi[2, 2, 1, F]-1))*rho[3, 1])/((pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+(((-pi[2, 1, 1, F]^2+pi[2, 1, 1, F])*pi[1, 2, 1, F]^2+(2*pi[1, 1, 1, F]*pi[2, 1, 1, F]*pi[2, 2, 1, F]+pi[2, 1, 1, F]^2-pi[2, 1, 1, F])*pi[1, 2, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1]-((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 2, 1, F]^2+(-2*pi[1, 3, 1, F]*pi[2, 2, 1, F]*pi[2, 3, 1, F]-pi[2, 3, 1, F]^2+pi[2, 3, 1, F])*pi[1, 2, 1, F]+pi[2, 2, 1, F]*pi[1, 3, 1, F]*(pi[1, 3, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[3, 1])*rho[2, 1]+pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2-rho[3, 1]*((pi[2, 3, 1, F]^2-pi[2, 3, 1, F])*pi[1, 1, 1, F]^2-pi[2, 3, 1, F]*(2*pi[1, 3, 1, F]*pi[2, 1, 1, F]+pi[2, 3, 1, F]-1)*pi[1, 1, 1, F]+pi[2, 1, 1, F]*pi[1, 3, 1, F]*(pi[2, 1, 1, F]-1)*(pi[1, 3, 1, F]-1))*rho[1, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2+(-(pi[2, 2, 1, F]+pi[1, 1, 1, F])*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1]-(-pi[2, 3, 1, F]*pi[1, 2, 1, F]+(pi[1, 3, 1, F]-1)*(pi[2, 2, 1, F]-1))*pi[1, 3, 1, F]*rho[3, 1])*rho[2, 1]+(pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]-pi[2, 3, 1, F]*((pi[2, 3, 1, F]-1)*pi[1, 1, 1, F]-pi[1, 3, 1, F]*pi[2, 1, 1, F]-pi[2, 3, 1, F]+1)*rho[3, 1])*rho[1, 1])*epsilon[1]-rho[2, 1]*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1])

 

dlogR[2, 1] = ((`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*(pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2+(((-pi[1, 2, 1, F]^2+pi[1, 2, 1, F])*pi[2, 1, 1, F]^2+(2*pi[1, 1, 1, F]*pi[1, 2, 1, F]*pi[2, 2, 1, F]+pi[1, 2, 1, F]^2-pi[1, 2, 1, F])*pi[2, 1, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[2, 1]-rho[3, 1]*((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 1, 1, F]^2+(-2*pi[1, 1, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 1, 1, F]+pi[2, 3, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 3, 1, F]-1)))*rho[1, 1]+pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2-((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 2, 1, F]^2+(-2*pi[1, 2, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 2, 1, F]+pi[2, 3, 1, F]*pi[1, 2, 1, F]*(pi[1, 2, 1, F]-1)*(pi[2, 3, 1, F]-1))*rho[3, 1]*rho[2, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*rho[1, 1]^2+((pi[1, 2, 1, F]*((`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 2, 1, F]+(pi[1, 2, 1, F]-1)*(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1]))*pi[2, 1, 1, F]-(pi[1, 1, 1, F]-1)*pi[2, 2, 1, F]*((`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 2, 1, F]+(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 2, 1, F]-`dlog&delta;`[2, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1]))*rho[2, 1]-(-pi[1, 3, 1, F]*(-pi[1, 1, 1, F]*dlogR[3, 1]+(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 3, 1, F]+(pi[1, 3, 1, F]-1)*(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1]))*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*pi[2, 3, 1, F]*(-pi[1, 1, 1, F]*dlogR[3, 1]+(`dlog&delta;`[2, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[2, 3, 1, F]+(`dlog&delta;`[1, 1]-`dlog&delta;`[3, 1]+dlogR[3, 1])*pi[1, 3, 1, F]-`dlog&delta;`[2, 1]+`dlog&delta;`[3, 1]-dlogR[3, 1]))*rho[3, 1])*rho[1, 1]-((pi[1, 3, 1, F]*pi[2, 2, 1, F]-pi[2, 3, 1, F]*(pi[1, 2, 1, F]-1))*pi[1, 2, 1, F]*rho[2, 1]+pi[2, 3, 1, F]*rho[3, 1]*pi[1, 3, 1, F])*dlogR[3, 1]*rho[3, 1])*epsilon[1]+(-pi[1, 3, 1, F]*pi[2, 1, 1, F]+pi[2, 3, 1, F]*(pi[1, 1, 1, F]-1))*dlogR[3, 1]*rho[1, 1]*rho[3, 1])/((pi[1, 1, 1, F]*pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2+(((-pi[1, 2, 1, F]^2+pi[1, 2, 1, F])*pi[2, 1, 1, F]^2+(2*pi[1, 1, 1, F]*pi[1, 2, 1, F]*pi[2, 2, 1, F]+pi[1, 2, 1, F]^2-pi[1, 2, 1, F])*pi[2, 1, 1, F]-pi[2, 2, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[2, 1]-rho[3, 1]*((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 1, 1, F]^2+(-2*pi[1, 1, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 1, 1, F]+pi[2, 3, 1, F]*pi[1, 1, 1, F]*(pi[1, 1, 1, F]-1)*(pi[2, 3, 1, F]-1)))*rho[1, 1]+pi[2, 2, 1, F]*pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]^2-((pi[1, 3, 1, F]^2-pi[1, 3, 1, F])*pi[2, 2, 1, F]^2+(-2*pi[1, 2, 1, F]*pi[1, 3, 1, F]*pi[2, 3, 1, F]-pi[1, 3, 1, F]^2+pi[1, 3, 1, F])*pi[2, 2, 1, F]+pi[2, 3, 1, F]*pi[1, 2, 1, F]*(pi[1, 2, 1, F]-1)*(pi[2, 3, 1, F]-1))*rho[3, 1]*rho[2, 1]+pi[2, 3, 1, F]*rho[3, 1]^2*pi[1, 3, 1, F]*(pi[2, 3, 1, F]+pi[1, 3, 1, F]-1))*epsilon[1]^2+(pi[2, 1, 1, F]*(pi[2, 1, 1, F]+pi[1, 1, 1, F]-1)*rho[1, 1]^2+(-(pi[2, 2, 1, F]+pi[1, 1, 1, F])*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[2, 1]-pi[2, 3, 1, F]*(-pi[1, 3, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 3, 1, F]-1))*rho[3, 1])*rho[1, 1]+(pi[1, 2, 1, F]*(pi[2, 2, 1, F]+pi[1, 2, 1, F]-1)*rho[2, 1]-((pi[1, 3, 1, F]-1)*pi[2, 2, 1, F]-pi[2, 3, 1, F]*pi[1, 2, 1, F]-pi[1, 3, 1, F]+1)*pi[1, 3, 1, F]*rho[3, 1])*rho[2, 1])*epsilon[1]-rho[2, 1]*(-pi[1, 2, 1, F]*pi[2, 1, 1, F]+(pi[1, 1, 1, F]-1)*(pi[2, 2, 1, F]-1))*rho[1, 1])

 

dlogR[3, 1] = dlogR[3, 1]

(5)

 

``

Download Example-vv.mw

# The bug looks severe to me. In Maple 2018 it is OK. 2019?
restart;
fname:= "atest.txt":
for i from 95 to 120 do
  a := 10^i + 13;   aok:=a;
  save a, fname;    read(fname);
  lprint('i'=i, filesize = FileTools:-Size(fname), OK=evalb(a=aok))
od:
# Correct only for i <= 96  (!?)

i = 95, filesize = 107, OK = true
i = 96, filesize = 108, OK = true
i = 97, filesize = 93, OK = false
i = 98, filesize = 94, OK = false
i = 99, filesize = 95, OK = false
i = 100, filesize = 96, OK = false
i = 101, filesize = 97, OK = false
i = 102, filesize = 98, OK = false
i = 103, filesize = 99, OK = false
i = 104, filesize = 100, OK = false
i = 105, filesize = 101, OK = false
i = 106, filesize = 102, OK = false
i = 107, filesize = 103, OK = false
i = 108, filesize = 104, OK = false
i = 109, filesize = 105, OK = false
i = 110, filesize = 106, OK = false
i = 111, filesize = 107, OK = false
i = 112, filesize = 108, OK = false
i = 113, filesize = 109, OK = false
i = 114, filesize = 110, OK = false
i = 115, filesize = 111, OK = false

i = 116, filesize = 93, OK = false
i = 117, filesize = 94, OK = false
i = 118, filesize = 95, OK = false
i = 119, filesize = 96, OK = false
i = 120, filesize = 97, OK = false

Edit. Same for floats! Try:  Digits:=200 and a:=10^i + 13.0

P:=proc(p,x,y)
  local pp:=expand(p), ld:=ldegree(pp,{x,y}), a:=floor(ld/2), b:=ld-a;
  coeff(coeff(pp,x,a),y,b)*x^a*y^b
end proc;

P(13*x^2*y^2 + x*y^2 + 2*y*x^2,x,y) # x*y^2
P(100*x^2*y^2 + 35*y*x + 45*x,x,y)   # 0

The double integral diverges.
I have supposed that Dgamma = D(gamma), Dphi = D(phi).
(Use gamma1 instead of gamma = used by Maple.) 
 

g(a) = piecewise(a < 0, 1/4*2^(1/2)*(a^2)^(1/4)*exp(-1/2*a^2)*BesselK(1/4,1/2*a^2),
-1/2*Pi^(1/2)*2^(1/4)*exp(-1/2*a^2)*(2^(1/2)*CylinderD(3/2,-2^(1/2)*a)+
2*a*CylinderD(1/2,-2^(1/2)*a)));

 

Note that actually the second branch is valid for a<0 too!

First 26 27 28 29 30 31 32 Last Page 28 of 111