wenny

20 Reputation

2 Badges

10 years, 355 days

MaplePrimes Activity


These are questions asked by wenny

Hi,

I have a problem solving two equations.  They are as follows:

s := 1/(273.16+50); s1 := 1/(273.16+145); s3 := 1/(273.16+250); s2 := 1/(273.16+197.5); gamma0 := 0.1e-3; gamma1 := .5; gamma2 := 0.15e-2; beta := -3800:

c := 300; n := 200; tau1 := 99; tau2 := 120;


Delta := solve(1-exp(-(gam0*tau1+(1/2)*gam1*tau1^2)*exp(beta*s1)) = 1-exp(-(gam0*a+(1/2)*gam1*a^2)*exp(beta*s2)), a);
a := Delta[1];


Theta := solve(1-exp(-(gam0*(a+tau2-tau1)+(1/2)*gam1*(a+tau2-tau1)^2)*exp(beta*s2)) = 1-exp(-(gam0*b+(1/2)*gam1*b^2)*exp(beta*s3)), b);
b := Theta[1];

n1 := int((gam1*t+gam0)*exp(beta*s1)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s1)), t = 0 .. tau1);
n22 := (n-n1)*(int((gam1*t+gam0)*exp(beta*s2)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s2)), t = a1 .. a1+tau2-tau1));
n2 := eval(n22, a1 = a);
n33 := (n-n1-n2)*(Int((gam1*t+gam0)*exp(beta*s3)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s3)), t = b1 .. c));
n3 := eval(n33, a1 = a);
n4 := n-n1-n2-n3;

g1 := -n1*(Int((1/(gam1*t+gam0)-t*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-n2*(Int((1/(gam0+gam1*(a+t-tau1))-(a+t-tau1)*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2))-n3*(Int((1/(gam0+gam1*(b+t-tau2))-(b+t-tau2)*exp(s3))*(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3)), t = tau2 .. c))+(n-n1-n2-n3)*(1/(gam0+gam1*(b+c-tau2))-(b+c-tau2)*exp(s3))*(gamma0+gamma1*(b+c-tau2)+gamma2*(b+c-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+c-tau2)+(1/2)*gamma1*(b+c-tau2)^2+(1/3)*gamma2*(b+c-tau2)^3)*exp(beta*s3));

g2 := -n1*(Int((t/(gam1*t+gam0)-(1/2)*t^2*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-n2*(Int(((a+t-tau1)/(gam0+gam1*(a+t-tau1))-(1/2)*(a+t-tau1)^2*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2))-n3*(Int(((b+t-tau2)/(gam0+gam1*(b+t-tau2))-(1/2)*(b+t-tau2)^2*exp(s3))*(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3)), t = tau2 .. c))+(n-n1-n2-n3)*((b+c-tau2)/(gam0+gam1*(b+c-tau2))-(1/2)*(b+c-tau2)^2*exp(s3))*(gamma0+gamma1*(b+c-tau2)+gamma2*(b+c-tau2)^2)*exp(beta*s3)*exp(-(gamma0*(b+c-tau2)+(1/2)*gamma1*(b+c-tau2)^2+(1/3)*gamma2*(b+c-tau2)^3)*exp(beta*s3));


solve({g1 = 0, g2 = 0}, {gam0, gam1});

Warning, solutions may have been lost.

What do I do wrong?

Thanks for advice in advance.

 

restart; with(linalg); with(stats); with(plots); with(Statistics); with(LinearAlgebra); 


s := 1/(273.16+50); s1 := 1/(273.16+145); s3 := 1/(273.16+250); s2 := 1/(273.16+197.5); gamma0 := 0.1e-3; gamma1 := .5; gamma2 := 0.15e-2; beta := -3800;
c := 300; n := 200; tau1 := 99; tau2 := 120;

Delta := solve(1-exp(-(gam0*tau1+(1/2)*gam1*tau1^2)*exp(beta*s1)) = 1-exp(-(gam0*a+(1/2)*gam1*a^2)*exp(beta*s2)), a);
a := Delta[1];


Theta := solve(1-exp(-(gam0*(a+tau2-tau1)+(1/2)*gam1*(a+tau2-tau1)^2)*exp(beta*s2)) = 1-exp(-(gam0*b+(1/2)*gam1*b^2)*exp(beta*s3)), b);
b := Theta[1];

n1 := n*(int((gam1*t+gam0)*exp(beta*s1)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s1)), t = 0 .. tau1));
200. - 200. exp(-0.01119474511 gam0 - 0.5541398828 gam1)
n2 := (n-n1)*(int((gam1*t+gam0)*exp(beta*s2)*exp(-(gam0*t+(1/2)*gam1*t^2)*exp(beta*s2)), t = a .. a+tau2-tau1));

g1 := -n1(gam0, gam1)*(int((1/(gam1*t+gam0)-t*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-evalf(n2(gam0, gam1)*(int((1/(gam0+gam1*(a+t-tau1))-(a+t-tau1)*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2)))

g2 := -n1*(int((t/(gam1*t+gam0)-(1/2)*t^2*exp(beta*s1))*(gamma2*t^2+gamma1*t+gamma0)*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1)), t = 0 .. tau1))-evalf(n2*(int(((a+t-tau1)/(gam0+gam1*(a+t-tau1))-(1/2)*(a+t-tau1)^2*exp(beta*s2))*(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2)*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2)), t = tau1 .. tau2)))

solve({g1 = 0, g2 = 0}, {gam0, gam1})

I want to find the answer of gam0 and gam1. It takes me 20 hours until now...and still evaluating...

Please Help ..

Dear All,

I'm trying to solve the following in Maple.

minimize(int(0.1e-3+.5*t+0.2e-2*t^2-b*t-a, t = 0 .. 300), location = true)

But Maple told me that the answer is

Float(-infinity), {[{a = Float(infinity), b = Float(infinity)}, Float(-infinity)]}.

I really need to get a kind of numerical answer. Would it be possible? Please Help me!!

As I am trying to solve this integration:

restart; with(linalg); with(stats); with(plots); with(Statistics); with(LinearAlgebra); with(Optimization);
lambda0 := proc (t) options operator, arrow; gamma0+gamma1*t+gamma2*t^2 end proc;
lambda := lambda0(t)*exp(beta*s);
t1 := 145; t3 := 250; t2 := (t1+t3)*(1/2);
s := 1/(273.16+50); s1 := 1/(273.16+t1); s3 := 1/(273.16+t3); s2 := 1/(273.16+t2); gamma0 := 0.1e-3; gamma1 := .5; gamma2 := 0; beta := -3800;
c := 300; n := 200;
Theta := solve(1-exp(-(gamma0*tau1+(1/2)*gamma1*tau1^2+(1/3)*gamma2*tau1^3)*exp(beta*s1)) = 1-exp(-(gamma0*a+(1/2)*gamma1*a^2+(1/3)*gamma2*a^3)*exp(beta*s2)), a);

a := Theta[1];

Delta := solve(1-exp(-(gamma0*(a+tau2-tau1)+(1/2)*gamma1*(a+tau2-tau1)^2+(1/3)*gamma2*(a+tau2-tau1)^3)*exp(beta*s2)) = 1-exp(-(gamma0*b+(1/2)*gamma1*b^2+(1/3)*gamma2*b^3)*exp(beta*s3)), b);

b := Delta[1];

A1 := `assuming`([unapply(int(exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1))/(gamma0+gamma1*t+gamma2*t^`2`), t = N .. M), N, M)], [N > 0, M > 0]);
A2 := unapply(int(exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2))/(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2), t = N .. M), N, M);
A3 := unapply(int(exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3))/(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2), t = N .. M), N, M);
B1 := `assuming`([unapply(int(t^2*exp(beta*s1)*exp(-(gamma0*t+(1/2)*gamma1*t^2+(1/3)*gamma2*t^3)*exp(beta*s1))/(gamma2*t^2+gamma1*t+gamma0), t = N .. M), N, M)], [N > 0, M > 0]);
B2 := unapply(int((a+t-tau1)^2*exp(beta*s2)*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2+(1/3)*gamma2*(a+t-tau1)^3)*exp(beta*s2))/(gamma0+gamma1*(a+t-tau1)+gamma2*(a+t-tau1)^2), t = N .. M), N, M);
B3 := unapply(int((b+t-tau2)^2*exp(beta*s3)*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2+(1/3)*gamma2*(b+t-tau2)^3)*exp(beta*s3))/(gamma0+gamma1*(b+t-tau2)+gamma2*(b+t-tau2)^2), t = N .. M), N, M);

F0 := A1(0, tau1)+A2(tau1, tau2)+A3(tau2, c);
F1 := B1(0, tau1)+B2(tau1, tau2)+B3(tau2, c);

NLPSolve(1/(n^3*(F0*F1-F1)), tau1 = 115 .. 201, tau2 = 237 .. 273);

I need to have tau1 tau2 as varibles to get there optimal values ..

But this error keeps coming :


Error, (in Optimization:-NLPSolve) integration range or variable must be specified in the second argument, got HFloat(1.0) = HFloat(158.0) .. HFloat(255.0)

Please Help ..

As am trying to solve this integration:


A(c,n,m):=evalf(int(1/(y)*exp(-c*y^(2)),y=n..m))

B(c,n,m):=evalf(int(exp(-c*y^(2)),y=n..m))

C(c,n,m):=evalf(int(y*exp(-c*y^(2)),y=n..m))

d(c,n,m):=evalf(int(y^(2)*exp(-c*y^(2)),y=n..m))

E(c,n,m):=evalf(int(y^(3)*exp(-c*y^(2)),y=n..m))

F0 := exp(beta*s1)*exp(gamma0^2*exp(beta*s1)/(2*gamma1))*A((1/2)*gamma1*exp(beta*s1), gamma0/gamma1,gamma0/gamma1+tau1)/gamma1+exp(beta*s2)*exp(gamma0^2*exp(beta*s2)/(2*gamma1))*A((1/2)*gamma1*exp(beta*s2), gamma0/gamma1+a, gamma0/gamma1+tau2-tau1+a)/gamma1+exp(beta*s3)*exp(gamma0^2*exp(beta*s3)/(2*gamma1))*A((1/2)*gamma1*exp(beta*s3), gamma0/gamma1+b, gamma0/gamma1+c-tau2+b)/gamma1

F1 := exp(beta*s1)*exp(gamma0^2*exp(beta*s1)/(2*gamma1))*(gamma0^2*A((1/2)*gamma1*exp(beta*s1), gamma0/gamma1, gamma0/gamma1+tau1)/gamma1^2-2*gamma0*B((1/2)*gamma1*exp(beta*s1), gamma0/gamma1, gamma0/gamma1+tau1)/gamma1+C((1/2)*gamma1*exp(beta*s1), gamma0/gamma1, gamma0/gamma1+tau1))/gamma1+exp(beta*s2)*exp(gamma0^2*exp(beta*s2)/(2*gamma1))*(gamma0^2*A((1/2)*gamma1*exp(beta*s2), gamma0/gamma1+a, gamma0/gamma1+tau2-tau1+a)/gamma1^2-2*gamma0*B((1/2)*gamma1*exp(beta*s2), gamma0/gamma1+a, gamma0/gamma1+tau2-tau1+a)/gamma1+C((1/2)*gamma1*exp(beta*s2), gamma0/gamma1+a, gamma0/gamma1+tau2-tau1+a))/gamma1+exp(beta*s3)*exp(gamma0^2*exp(beta*s3)/(2*gamma1))*(gamma0^2*A((1/2)*gamma1*exp(beta*s3), gamma0/gamma1+b, gamma0/gamma1+c-tau2+b)/gamma1^2-2*gamma0*B((1/2)*gamma1*exp(beta*s3), gamma0/gamma1+b, gamma0/gamma1+c-tau2+b)/gamma1+C((1/2)*gamma1*exp(beta*s3), gamma0/gamma1+b, gamma0/gamma1+c-tau2+b))/gamma1

F01 := exp(beta*s1)*exp(gamma0^2*exp(beta*s1)/(2*gamma1))*(B((1/2)*gamma1*exp(beta*s1), gamma0/gamma1, gamma0/gamma1+tau1)-gamma0*A((1/2)*gamma1*exp(beta*s1), gamma0/gamma1, gamma0/gamma1+tau1)/gamma1)/gamma1+exp(beta*s2)*exp(gamma0^2*exp(beta*s2)/(2*gamma1))*(B((1/2)*gamma1*exp(beta*s2), gamma0/gamma1+a, gamma0/gamma1+tau2-tau1+a)-gamma0*A((1/2)*gamma1*exp(beta*s2), gamma0/gamma1+a, gamma0/gamma1+tau2-tau1+a)/gamma1)/gamma1+exp(beta*s3)*exp(gamma0^2*exp(beta*s3)/(2*gamma1))*(B((1/2)*gamma1*exp(beta*s3), gamma0/gamma1+b, gamma0/gamma1+c-tau2+b)-gamma0*A((1/2)*gamma1*exp(beta*s3), gamma0/gamma1+b, gamma0/gamma1+c-tau2+b)/gamma1)/gamma1

`Fβ` := int((s1^2*(gamma0*t+(1/2)*gamma1*t^2)*exp(beta*s1)*(gamma1*t+gamma0)*exp(beta*s1))*exp(-(gamma0*t+(1/2)*gamma1*t^2)*exp(beta*s1)), t = 0 .. tau1)+int((s2^2*(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2)*exp(beta*s2)*(gamma0+gamma1*(a+t-tau1))*exp(beta*s2))*exp(-(gamma0*(a+t-tau1)+(1/2)*gamma1*(a+t-tau1)^2)*exp(beta*s2)), t = tau1 .. tau2)+int((s3^2*(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2)*exp(beta*s3)*(gamma0+gamma1*(b+t-tau2))*exp(beta*s3))*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2)*exp(beta*s3)), t = tau2 .. c)+int((s3^2*(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2)*exp(beta*s3)*(gamma0+gamma1*(b+t-tau2))*exp(beta*s3))*exp(-(gamma0*(b+t-tau2)+(1/2)*gamma1*(b+t-tau2)^2)*exp(beta*s3)), t = c .. infinity)

I need to have tau2 as varibles to get there optimal values ..

Minimize(1/((F0*F1-F01^2)*n^3*`Fβ`), tau2 = 237..273})

But this error keeps coming :

Error, (in Optimization:-NLPSolve) integration range or variable must be specified in the second argument, got HFloat(1.0) = 121.0828419 .. HFloat(193.0828419)

Please Help ..

1 2 Page 2 of 2