Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

Hello. Two teams A and B (consisting of 2, 3 or even 4 players) compete and the outcome of each game is either a win or a loss. I have a to process the new (gaussian) laws of players given whom beats whom.

Given the initial means and standard deviations of the players, I have a algorithm (RC) which computes the new laws of the players. [the actual algorithm i use is different to the one i am showing here]. 

By way of example consider two teams with 2 players per side. Each person plays 2 games.

The initial laws of A1,A2,B1,B2 are given.

(A1,B1) --->(A1',B1').......[iteration 1. A1 beats B1, resulting in new laws A1' and B1'(computed by RC)]

(B2, A1') --->(B2', A1").......[ iteration 2. B2 beats A1. using A1' from iteration 1. A1 has played twice and is denoted by A1"]

(B2',A2) --->(B2",A2').......[ iteration 3. B2 beats A2. using B2' from iteration 2.  B2 has finished and is denoted by B2"]

(A2',B1') --->( A2",B1")......[ iteration 4. A2 beats B1. using B1' from iteration 1 and A2' from iteration 3. now all players have played their matches]

new laws A1" ,A2", B1" & B2" should be outputted.

my first code gets the result, but it is tedious to enter the iterations in the right place .especially for teams of 3 or more.

my second with parameters gets errors.

So what i want is to enter who beat who:

eg  [[B1, A1], [B2,A1], [B2, A2], [A2, B1]];
and the final laws are computed automatically.

bb_processing_edit.mw

Hello! I am facing the problem to making the grahp of system of ODEs in the attached file from eta=-1..1. Please see the attachment and fixed it. I will be waiting your positive response.

new_graph_exact.mw

With my best regards and sincerely.

Muhammad Usman

School of Mathematical Sciences 
Peking University, Beijing, China

Email: muhammadusman@pku.edu.cn

Mob #: 0086-13001903838


 

dsolve({Q(0) = 0, Q(t) = (1.375*4190)*(80-T__1(t)), Q(t) = (1.375*4190)*(T__2(t)-38.2), diff(Q(t), t) = (0.1375e-1*(T__1(t)-T__1s(t)))*((T__1(t)+T__1s(t))*(1/2)), diff(Q(t), t) = (0.1375e-1*(T__2s(t)-T__2(t)))*((T__2s(t)+T__2(t))*(1/2)), diff(Q(t), t) = (240*0.1375e-1)*(T__1s(t)-T__2s(t))/(0.1e-2)}, numeric)

Error, (in dsolve/numeric/DAE/initial) missing initial conditions for the following: {T__1s}

 

``

i got 3 diff ecuations with two algebraic ones. a system of DAEs. there is only a derivative included on systems, for which it's necesary only one initial condition for solving the system, which is Q(0)=0. why maple wants to know initial conditions for T_1s. it's not supposed to calculate it itself?
 

Download ecuation_2.mwecuation_2.mw

How do I make find and replace work?  Currently the replace and find button is grayed out.  What magic gets me into a state where the button can be used?

Thanks

P.S. Is there any "package" or "mode" or way some how that emacs key bindings can be made to work (including things like find and replace)?  The user interface would be much improved if I knew how to enable that.


 

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d

diff(Q(t), t) = h__1(t)*A*(T__1(t)-T__1s(t))

diff(Q(t), t) = h__2(t)*A*(T__2s(t)-T__2(t))

Q(t) = m__1*c__p*(T__1i-T__1(t))

Q(t) = m__2*c__p*(T__2(t)-T__2i)

h__1(t) = k(T__1(t), T__1s(t))*(.825+.387*(g*h^3*c__p*beta(T__1(t), T__1s(t))*rho(T__1(t), T__1s(t))^2*(T__1(t)-T__1s(t))/(k(T__1(t), T__1s(t))*mu(T__1(t), T__1s(t))))^(1/6)/(1+(.492*k(T__1(t), T__1s(t))/(c__p*mu(T__1(t), T__1s(t))))^(9/16))^(8/27))^2/h

h__2(t) = k(T__2(t), T__2s(t))*(.825+.387*(g*h^3*c__p*beta(T__2(t), T__2s(t))*rho(T__2(t), T__2s(t))^2*(T__2s(t)-T__2(t))/(k(T__2(t), T__2s(t))*mu(T__2(t), T__2s(t))))^(1/6)/(1+(.492*k(T__2(t), T__2s(t))/(c__p*mu(T__2(t), T__2s(t))))^(9/16))^(8/27))^2/h

 

 

rho(T__1(t), T__1s(t)) = 999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4

beta(T__1(t), T__1s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)
mu(T__1(t), T__1s(t)) = 2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)

k(T__1(t), T__1s(t)) = -9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949

 

 

rho(T__2(t), T__2s(t)) = 999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4

beta(T__2(t), T__2s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)
mu(T__2(t), T__2s(t)) = 2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)

k(T__2(t), T__2s(t)) = -9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949

 

"`h__1`(t)=(-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__1`(t)+`T__1s`(t))+2.63217825*10^(-5) (`T__1`(t)+`T__1s`(t))^(2)-4.9518879*10^(-8) (`T__1`(t)+`T__1s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))^(2) (`T__1`(t)-`T__1s`(t)))/((-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

"`h__2`(t)=(-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__2`(t)+`T__2s`(t))+2.63217825*10^(-5) (`T__2`(t)+`T__2s`(t))^(2)-4.9518879*10^(-8) (`T__2`(t)+`T__2s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))^(2) (`T__2s`(t)-`T__2`(t)))/((-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)^2))*(T__1(t)-T__1s(t))/(2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)^2))*(T__2s(t)-T__2(t))/(2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__1(t)-0.7097451000e-2*T__1s(t)+0.2632178250e-4*(T__1(t)+T__1s(t))^2-0.4951887900e-7*(T__1(t)+T__1s(t))^3)*(999.9399+0.2108242500e-1*T__1(t)+0.2108242500e-1*T__1s(t)-0.1774362750e-2*(T__1(t)+T__1s(t))^2+0.4386963750e-5*(T__1(t)+T__1s(t))^3-0.6189861563e-8*(T__1(t)+T__1s(t))^4)*(T__1(t)-T__1s(t))/(10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__2(t)-0.7097451000e-2*T__2s(t)+0.2632178250e-4*(T__2(t)+T__2s(t))^2-0.4951887900e-7*(T__2(t)+T__2s(t))^3)*(999.9399+0.2108242500e-1*T__2(t)+0.2108242500e-1*T__2s(t)-0.1774362750e-2*(T__2(t)+T__2s(t))^2+0.4386963750e-5*(T__2(t)+T__2s(t))^3-0.6189861563e-8*(T__2(t)+T__2s(t))^4)*(T__2s(t)-T__2(t))/(10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

(1)

"(->)"

``

``

``

i have a system with 5 dif equations and five unknows. i have told to maple to solve it numerically with interactively solve comand (right cilck button). the window open like it normally does and i put values to my parameters, with an initial condition for the system (Q(0)=0). then i press numerically solve and that's all, the program just keep evaluating with no answer. i wait for 15 min, which i think is too much time, and got any answer yet.

hope you can help with this

thanks.. 
 

Download propuesta_transfer.mw

with(DifferentialGeometry):with(JetCalculus):
DGsetup([x],[u],E,5);
vars≔x,u,u[1],u[1,1],u[1,1,1];
PDEtools[declare](Q(vars));
TotalDiff(Q(vars),x);
TotalDiff(u[1,1],x);

 

Hi everyone,

Recently I came across the total differentiation command in the PDEtools. For its

documentation, I used the following link

http://www.maplesoft.com/support/help/Maple/view.aspx?path=DifferentialGeometry/JetCalculus/TotalDiff

Unfortunately, when I try to replicate this it did not work as expected. I am getting the total derivative of the expression to be zero. I do not understand where I am going wrong.

You can find my code above. I am also attaching the screen shot of my maple file.

I would really appreciate if someone could help me out. Thanks for your help.


 

The following program hangs on the last command and a hard restart is required. The computation of a 2 x 2 matrix times a 2-vector is not that hard. Any ideas as to what is happening?

Another question: if v is a vector that depends on x and y say why does
>solve(v=0,{x,y})
not work?

It should only take a few lines of code to change v=0 to the system {components of v = 0}

Does anyone know if there is a simple way to write a falling factorial (pochhammer symbol) in Maple. It seems pochhammer is the rising factorial with no option to change to falling.

Thanks in advance.

Dears;

Hope everyone is fine. I am try to find the numerical solutions of system of nonlinear algabric equation via newton's raphson method in the attached file but failed. Please see the attachment and try to correct. You can solve it least square method if possible. I am waiting your positive response. 

Help_in_Newton.mw

With my best regards and sincerely.

Muhammad Usman

School of Mathematical Sciences 
Peking University, Beijing, China

Email: muhammadusman@pku.edu.cn


 

T := proc (t) options operator, arrow; 80+(-1)*1.4375*53*(1-exp((-1)*0.13775e-1*2.875*k*h__1*h__2*t/(1.4375^2*4190*(k*(h__1+h__2)+0.1e-2*h__1*h__2))))/2.875 end proc

proc (t) options operator, arrow; 80+(-1)*1.4375*53*(1-exp((-1)*0.13775e-1*2.875*k*h__1*h__2*t/((1.4375^2*4190*(k*(h__1+h__2)+0.1e-2*h__1*h__2)))))/2.875 end proc

(1)

T(204.39)

53.50000000+26.50000000*exp(-8.094482719*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2))

(2)

T(429.63)

53.50000000+26.50000000*exp(-17.01469059*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2))

(3)

T(872.5)

53.50000000+26.50000000*exp(-34.55372656*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2))

(4)

fsolve({53.50000000+26.50000000*exp(-34.55372656*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2)) = 56.15, 53.50000000+26.50000000*exp(-17.01469059*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2)) = 64.1, 53.50000000+26.50000000*exp(-8.094482719*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2)) = 72.05}, {h__1 = 0 .. 1000, h__2 = 0 .. 1000, k = 0 .. 1000})

fsolve({53.50000000+26.50000000*exp(-34.55372656*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2)) = 56.15, 53.50000000+26.50000000*exp(-17.01469059*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2)) = 64.1, 53.50000000+26.50000000*exp(-8.094482719*k*h__1*h__2/(8658.242188*k*(h__1+h__2)+8.658242188*h__1*h__2)) = 72.05}, {h__1, h__2, k}, {h__1 = 0 .. 1000, h__2 = 0 .. 1000, k = 0 .. 1000})

(5)

``

it would be great if you could explain me why maple cant numerically solve this set of 3 ecuatios for h1, h2, k being my unknows terms, it works with an exponential function. there is a way to solve it?

thanks..
 

Download heat_ecuation.mw

Hello! Prompt please as in Maple can determine the distribution function of the resulting histogram distribution? I know about cdf function, but how to act in relation to the histogram do not know.

Histogram:

restart;
with(stats);
with(stats[statplots]);
data2 := [30, 30.5, 31, 31.5, 32, 32.5, 32.6, 33, 33.1, 33.3, 33.6, 34, 35, 36];
histogram(data2, area = count);

In other words, I need smoothing the histogram, get graph and get on it to obtain an analytical expression.

Aslam o Alikum!

Hope everyone going fine with sound health I want to make the graph of following system of ODEs

Eq1 := diff(F(eta), eta, eta, eta, eta)-M*(eta*(diff(F(eta), eta, eta, eta))+3*(diff(F(eta), eta, eta))+(diff(F(eta), eta))*(diff(F(eta), eta, eta))-F(eta)*(diff(F(eta), eta, eta, eta)))-Ha^2*(diff(F(eta), eta, eta));
Eq2 := diff(G(eta), eta, eta)+Pr*M*(F(eta)*(diff(G(eta), eta))-eta*(diff(G(eta), eta)))+Pr*Ec*(diff(F(eta), eta, eta))^2+Nb*(diff(H(eta), eta))+diff(G(eta), eta)+Nt*(diff(G(eta), eta))^2;
Eq3 := diff(H(eta), eta, eta)+M*Sc*(F(eta)*(diff(H(eta), eta))-eta*(diff(H(eta), eta)))+Nt*(diff(F(eta), eta, eta))/Nb;
 

using the BC's

IC1 := F(0) = 0, ((D@@2)(F))(0) = 0, (D(G))(0) = 0, (D(H))(0) = 0;
     F(0) = 0, @@(D, 2)(F)(0) = 0, D(G)(0) = 0, D(H)(0) = 0
IC2 := F(1) = 1, (D(F))(1) = 0, G(1) = 1, H(1) = 1;
 

for Ec := .1; Nt := .1; Nb := .1; Sc := .5; Pr := 10; M := .5; and different values of Ha like Ha:=0, Ha:=2, Ha:=4, Ha:=6 and Ha:=8 in one coordinate. 

I am waiting your positive response.

int(a(t)*b(t)+2*(diff(a(t), t))*(diff(b(t), t)), a(t));
Error, (in int) integration range or variable must be specified in the second argument, got a(t)
 

do not understand this error message,

how to integrate it?

ha := (diff(c(t), t))/(c(t)*(diff(c(t), t))-c(t));
solve(subs(m=ha,f(m))*subs(m=subs(c(t)=a(t),ha)), f(m)) = subs(m=ha+subs(c(t)=a(t),ha), f(m), f);

just expect to find a function ?
 

1. How to generate times series data that have some logic law

but do not include distributive law?

First 35 36 37 38 39 40 41 Last Page 37 of 71