Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi,

I have an expression like x:= C*exp(I*T[1]*e*eta) and want to define e*T[1] as T[2]. How can I do this with coding?

Regards,

Bahar

 

 

Maple 2019.1 with Physics version 362  gives this strange error on this pde

restart;
pde := x*diff(u(x, y), x) + y*diff(u(x, y), y) = -4*x*y*u(x, y);
ic := u(x, 0) = exp(-x);
sol:=pdsolve([pde,ic],u(x,y));

Error is

Error, (in PDEtools:-casesplit) equation of unknown type integer : 1

Is this a bug? It shows only when using exp(-x). Changing it to exp(-x^2) or exp(x) do not show the error, even though Maple can't solve it.

On windows 10.

Exercises solved online with Maple exclusively in space. I attach the explanation links on my YouTube channel.

Part # 01

https://www.youtube.com/watch?v=8Aa2xzU8LwQ

Part # 02

https://www.youtube.com/watch?v=qyGT28CeSz4

Part # 03

https://www.youtube.com/watch?v=yf8rjSPbv5g

Part # 04

https://www.youtube.com/watch?v=FwHPW7ncZTg

Part # 05

https://www.youtube.com/watch?v=bm3frpukb0I

Link for download the file:

Vector_Exercises-Force_in_space.mw

Lenin AC

Ambassador of Maple

 

 

 

Hi, I want to transform the formula as following,how can I do?

PS: code 

(2*I*Zeta*omega*omega[0] - omega^2 + omega[0]^2)*fourier(omega[r](t), t, omega) = (omega*B[1]*I + B[0])*fourier(delta(t), t, omega)


 

restart:
with(LinearAlgebra):
with(plots):
with(geometry):
with(plottools): # On appelle alpha la moitié de l'angle de rotation de la roue menée par tour de roue menante. alpha=Pi/n en raduans soit Pi/5=36° pour 5 rainures.. On a alors les relations suivantes entre l'entaxe E, le rayon de la roue ùenante R1 et le rayon de la roue menée R2 : R1=E.sin(alpha), R2=E*cos(alpha) Intersection du cercle (O,R2) avec la droite tan(phi)x-r/cos(phi), on obtient les coordonnées de P3
sol:=allvalues(solve([tan(phi)*x-r/cos(phi)=y,y^2+x^2=R2^2],[x,y])): # Intersection de 2 cercles
sol1:=allvalues(solve([(x-E)^2+y^2=(R-a)^2,y^2+x^2=R2^2],[x,y])): # Coordonnées des points du pourtour de l'élément de croix #point(O,0,0):
phi:=Pi/5:
R2:=5:
r:=1/4:
E:=R2/cos(phi):
R:=R2*tan(phi):
a:=0.5:
[(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)];
geometry[point](P1,(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)):
geometry[point](P2,(R2/2)*cos(phi)+r*sin(phi),(R2/2)*sin(phi)-r*cos(phi)):

[(9/4)*cos((1/5)*Pi), (9/4)*sin((1/5)*Pi)]

xP2:=(R2/2)*cos(phi)+r*sin(phi):
yP2:=(R2/2)*sin(phi)-r*cos(phi):
xP1:=(R2/2-r)*cos(phi):
yP1:=(R2/2-r)*sin(phi): # Equation paramétrique du segment OP1 (t varie de 0 à 1) ; non pris en compte
x1:=t*(0-xP1)+xP1:
y1:=t*(0-yP1)+yP1:
n1:=5:
dt:=1/(n1-1): #t varie entre 0 et 1

for i to n1 do tau:=(i-1)*dt:
xx[i]:=evalf(subs(t=tau,x1)):
yy[i]:=evalf(subs(t=tau,y1)): #print(i,xx[i],yy[i]);
od: # Equation paramétrique du quart de cercle P1P2 de la rainure (t varie de 0 à 1)
x2:=R2/2*cos(phi)+r*cos(t): #attention au sens de rotation du parcours de l'objet
y2:=R2/2*sin(phi)+r*sin(t):
n2:=6:
dt:=Pi/2/(n2-1): #arc de Pi/2
for i to n2 do
tau:=phi-Pi+(i-1)*dt:
xx[i]:=evalf(subs(t=tau,x2)):
yy[i]:=evalf(subs(t=tau,y2)):
od:
for i to n2 do
Vector[row]([i,xx[i],yy[i]])
od:

droite:=plot((tan(phi)*x-r/cos(phi),x=0..3),linestyle=dot,color=blue):

xP3:=evalf(subs(op(1,sol[1]),x)):
yP3:=evalf(subs(op(1,sol[1]),y)):
xP2:=evalf(subs(op(1,sol[2]),x)):
yP2:=evalf(subs(op(1,sol[2]),y)):
xP4:=evalf(subs(op(1,sol1[1]),x)):
yP4:=evalf(subs(op(1,sol1[1]),y)):
xP5:=E-(R-a):
yP5:=0:
x3:=t*(xP3-xP2)+xP2:
y3:=t*(yP3-yP2)+yP2:
n3:=10:
dt:=1/(n3-1): #t varie entre 0 et 1

for i to n3 do
tau:=(i-1)*dt:
xx[i+n2]:=evalf(subs(t=tau,x3)):
yy[i+n2]:=evalf(subs(t=tau,y3)):
od:

for i to n3 do Vector[row]([i,xx[i],yy[i]]) od:

x4:=xP5+R-a+(R-a)*cos(t):#attention au sens de rotation du parcours de l'objet
y4:=(R-a)*sin(t):
n4:=11:
eta:=arcsin(yP4/(R-a)):
dt:=(-eta)/(n2-1)/2:#arc de Pi/2

for i to n4 do
tau:=(Pi+eta)+(i-1)*dt: #recherche de tau ?
xx[i+n2+n3]:=evalf(subs(t=-tau,x4)):
yy[i+n2+n3]:=evalf(subs(t=-tau,y4)):
od:

for i to n4 do
Vector[row]([i,xx[i],yy[i]])
od:

n:=n2+n3+n4;
for i to n do
Vector[row]([i,xx[i],yy[i]])
od:

27

figure:=NULL:
for i from 0 to n do
xx[0]:=0:
yy[0]:=0:
figure:=figure,[xx[i],yy[i]]:
od:

figure:=[figure]:

polygonplot(figure,scaling=constrained,color=yellow);#,view=[-0.1..5,-0.1..3]

for i to n do
X[i]:=xx[i]:
Y[i]:=yy[i]
od:

d1:=plottools[disk]([xP1,yP1],0.05,color=blue):############ non définis
d2:=plottools[disk]([xP2,yP2],0.05,color=red):############ non définis

n := 27; ##### ci-dessus, il faut arrêter le trait à l'axe Ox ############### il suffit de prendre le symétrique puis 4 rotations de Pi/5 #############
symOX:= pt -> [pt[1],-pt[2]]:
rot:=proc(t,pt) [pt[1]*cos(t)-pt[2]*sin(t),pt[1]*sin(t)+pt[2]*cos(t)]; end:
figure1:=[ op(figure),op(map(symOX,figure))]:
croix:=op(figure1):

27

for i to 4 do croix:=croix,op(map( pt -> rot(i*2*Pi/5,pt),figure1) ): od:
croix:=[croix]:
polygonplot(croix,scaling=constrained,color=yellow); #How arrange this drawning and animate it. Thank you.

 


 

Download GenovaDrive.mw

[Just in case the above is not a 100%-correct presentation of the original code, I've left it below in its origianally posted form.--Carl Love as Moderator]

restart:with(LinearAlgebra):with(plots):with(geometry):with(plottools): On appelle alpha la moitié de l'angle de rotation de la roue menée par tour de roue menante. alpha=Pi/n en raduans soit Pi/5=36° pour 5 rainures.. On a alors les relations suivantes entre l'entaxe E, le rayon de la roue ùenante R1 et le rayon de la roue menée R2 : R1=E.sin(alpha), R2=E*cos(alpha) Intersection du cercle (O,R2) avec la droite tan(phi)x-r/cos(phi), on obtient les coordonnées de P3 sol:=allvalues(solve([tan(phi)*x-r/cos(phi)=y,y^2+x^2=R2^2],[x,y])): Intersection de 2 cercles sol1:=allvalues(solve([(x-E)^2+y^2=(R-a)^2,y^2+x^2=R2^2],[x,y])): Coordonnées des points du pourtour de l'élément de croix #point(O,0,0): phi:=Pi/5:R2:=5:r:=1/4:E:=R2/cos(phi):R:=R2*tan(phi):a:=0.5: [(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)]: geometry[point](P1,(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)): geometry[point](P2,(R2/2)*cos(phi)+r*sin(phi),(R2/2)*sin(phi)-r*cos(phi)): xP2:=(R2/2)*cos(phi)+r*sin(phi):yP2:=(R2/2)*sin(phi)-r*cos(phi): xP1:=(R2/2-r)*cos(phi):yP1:=(R2/2-r)*sin(phi): Equation paramétrique du segment OP1 (t varie de 0 à 1) ; non pris en compte x1:=t*(0-xP1)+xP1: y1:=t*(0-yP1)+yP1: n1:=5: dt:=1/(n1-1):#t varie entre 0 et 1 for i to n1 do tau:=(i-1)*dt: xx[i]:=evalf(subs(t=tau,x1)): yy[i]:=evalf(subs(t=tau,y1)): #print(i,xx[i],yy[i]); od: Equation paramétrique du quart de cercle P1P2 de la rainure (t varie de 0 à 1) x2:=R2/2*cos(phi)+r*cos(t):#attention au sens de rotation du parcours de l'objet y2:=R2/2*sin(phi)+r*sin(t): n2:=6: dt:=Pi/2/(n2-1):#arc de Pi/2 for i to n2 do tau:=phi-Pi+(i-1)*dt: xx[i]:=evalf(subs(t=tau,x2)): yy[i]:=evalf(subs(t=tau,y2)): od: for i to n2 do Vector[row]([i,xx[i],yy[i]]) od: droite:=plot((tan(phi)*x-r/cos(phi),x=0..3),linestyle=dot,color=blue): sol[1]: xP3:=evalf(subs(op(1,sol[1]),x)):yP3:=evalf(subs(op(1,sol[1]),y)): xP2:=evalf(subs(op(1,sol[2]),x)):yP2:=evalf(subs(op(1,sol[2]),y)): xP4:=evalf(subs(op(1,sol1[1]),x)):yP4:=evalf(subs(op(1,sol1[1]),y)): xP5:=E-(R-a):yP5:=0: x3:=t*(xP3-xP2)+xP2: y3:=t*(yP3-yP2)+yP2: n3:=10: dt:=1/(n3-1):#t varie entre 0 et 1 for i to n3 do tau:=(i-1)*dt: xx[i+n2]:=evalf(subs(t=tau,x3)): yy[i+n2]:=evalf(subs(t=tau,y3)): od: for i to n3 do Vector[row]([i,xx[i],yy[i]]) od: x4:=xP5+R-a+(R-a)*cos(t):#attention au sens de rotation du parcours de l'objet y4:=(R-a)*sin(t): n4:=11: eta:=arcsin(yP4/(R-a)): dt:=(-eta)/(n2-1)/2:#arc de Pi/2 for i to n4 do tau:=(Pi+eta)+(i-1)*dt:#recherche de tau ? xx[i+n2+n3]:=evalf(subs(t=-tau,x4)): yy[i+n2+n3]:=evalf(subs(t=-tau,y4)): od: for i to n4 do Vector[row]([i,xx[i],yy[i]]) od: n:=n2+n3+n4; for i to n do Vector[row]([i,xx[i],yy[i]]) od: figure:=NULL: for i from 0 to n do xx[0]:=0:yy[0]:=0: figure:=figure,[xx[i],yy[i]]: od: figure:=[figure]: polygonplot(figure,scaling=constrained,color=yellow):#,view=[-0.1..5,-0.1..3] for i to n do X[i]:=xx[i]: Y[i]:=yy[i] od: d1:=plottools[disk]([xP1,yP1],0.05,color=blue):############ non définis d2:=plottools[disk]([xP2,yP2],0.05,color=red):############ non définis n := 27 ##### ci-dessus, il faut arrêter le trait à l'axe Ox ############### il suffit de prendre le symétrique puis 4 rotations de Pi/5 ############# symOX:= pt -> [pt[1],-pt[2]]: rot:=proc(t,pt) [pt[1]*cos(t)-pt[2]*sin(t),pt[1]*sin(t)+pt[2]*cos(t)]; end: figure1:=[ op(figure),op(map(symOX,figure))]: croix:=op(figure1): for i to 4 do croix:=croix,op(map( pt -> rot(i*2*Pi/5,pt),figure1) ): od: croix:=[croix]: polygonplot(croix,scaling=constrained,color=yellow); How arrange this drawning and animate it. Thank you.

I am working with the Physics package in Maple 2018. I have a spacetime with a metric g and the vector field l is the tangent to a null curve. I have two problems:

(1) I want to check in maple that indeed g(l,l)=0. For this I wrote:

SumOverRepeatedIndices(g_[mu,nu]l[~mu]l[~nu])

Firstly, when I try to execute this command, the program keeps on evaluating for a long time. So, I have to `interrupt the current operation', undo this command, save and reopen the file, execute the entire worksheet again and then somehow it works. However, as you can see in step(13) of the attached worksheet, Maple returns an expression for this command but doesn't cancel out terms and show that it is indeed zero. How can I do this?

(2) I wish to find $(\nabla_l l)^\nu$. Is there a way to directly do this? Or should I do something like:

Define(L[mu,~nu]=D_mu l[~nu])

SumOverRepeatedIndices(l[~mu]L[mu,~nu])

Thanks a lot.

Edit: I actually carried out these steps too. First, I defined $L_\mu^\nu$ in step (14). Then, when I ask for the non-zero components of L, I find that the L\mu,\nu components are given. How can I get the non-zero L\mu\nu components? Also, in step (16), I did the `SumOverRepeatedindices' but it returned only a symbolic result without evaluationg.

try2.mw

Hi I have encounted this error:

Error, (in diffalg/DAparse_polynomial) unknown indeterminate or coefficient outside base field, -Cp+Cf/(1+Kw*(-sigma*`ΔPi`+`ΔP`)*(1-(1/2)*Fp/Ff)/Ks)

The text highlighted in bold is an equation that I typed in.

 

Can I know what it means?

I was trying to verify some solution to pde in textbook using Maple. The book gives the Cauchy data for this first order PDE in the form that Maple does not like when I used it as input. Here is an example

When I typed

 

pde:=u(x,y)*(x+y)*diff(u(x,y),x)+u(x,y)*(x-y)*diff(u(x,y),y)=x^2+y^2;
ic:=u(x,2*x)=0;
pdsolve([pde,ic],u(x,y))

Maple complained

Error, (in PDEtools:-Library:-NormalizeBoundaryConditions) unexpected 
occurrence of the variables {x} in the 2nd operand of u(x, 2*x) in the given initial conditions

In Mathematica it accepts such form of Cauchy data:

pde=u[x,y]*(x+y)*D[u[x,y],x]+u[x,y]*(x-y)*D[u[x,y],y]==x^2+y^2;
ic=u[x,2*x]==0;
DSolve[{pde,ic},u[x,y],{x,y}]

(I have not verified the above answer is correct or not).

Am I doing something wrong in Maple?

Or is there a trick or option or method to allow Maple to accepts such initial conditions? The book I am looking at has many problems where Cauch data is given on such form (i.e. u=0 on specific curve or in 3D on some specific surface). Here is another example

 

Which I'd like write its initial conditions as u(x,1/x)=0 but can not.

I could ofcourse solve the pde without these initial conditions, and then post process the answer to find the constants of integration from the Cauchy data given. But it will be nice if Maple would accept the IC as is.

 

 

 

@chandrashekhar 

There are no efficient algorithms for this.
How would you simplify by hand the expression

512*b^9 + (2303*a + 2304)*b^8 + (4616*a^2 + 9216*a + 4608)*b^7 + (5348*a^3 + 16128*a^2 + 16128*a + 5376)*b^6
 + (4088*a^4 + 16128*a^3 + 24192*a^2 + 16128*a + 4032)*b^5 + (1946*a^5 + 10080*a^4 + 20160*a^3 + 20160*a^2 
+ 10080*a + 2016)*b^4 + (728*a^6 + 4032*a^5 + 10080*a^4 + 13440*a^3 + 10080*a^2 + 4032*a + 672)*b^3 
+ (116*a^7 + 1008*a^6 + 3024*a^5 + 5040*a^4 + 5040*a^3 + 3024*a^2 + 1008*a + 144)*b^2 
+ (26*a^8 + 144*a^7 + 504*a^6 + 1008*a^5 + 1260*a^4 + 1008*a^3 + 504*a^2 + 144*a + 18)*b + 9*a^8 
+ 36*a^7 + 84*a^6 + 126*a^5 + 126*a^4 + 84*a^3 + 36*a^2 + 9*a + 1

to  (a+2*b+1)^9 - a*(a-b)^8   ?

 

1,1,2,2,2,3,3,2,2,1,2,2,2,3,3,1,1

i would like to research the ordering mechanism of this kind of series Before sorting.

How I can simplify result? For factor or using rule.

Thanks

 

Dear there, 

Is there a possibility for tracking changes like Microsoft Office in the saved a Maple worksheet after some editings?


I think that we all encounter the same case. I mean we don't remember generally all changes after editing our codes. 

If there is no possibility for tracking changes,  what are your solutions or suggestions in order to prevent to forget? 

Hi

how can i find x in terms of y(x)

 

y(x)=integral exp(-x)/(sqrt(exp(-2 x) + a) - sqrt(a)) dx = e^x (sqrt(a + e^(-2 x)) + sqrt(a)) - log(sqrt(a + e^(-2 x)) + e^(-x)) + constant
(assuming a complex-valued logarithm)

Is it considered a bug when pdetest does not give zero for a solution given by pdsolve? 

restart;
pde := x*diff(w(x,y,z),x)+  a*z*diff(w(x,y,z),y)+b*y*diff(w(x,y,z),z)=c:
sol:=pdsolve(pde,w(x,y,z));
pdetest(sol,pde)

Gives

which is not zero.

This is the first time I've seen this happen. 

Maple 2019.1 using Physics version 362

 

 

First 551 552 553 554 555 556 557 Last Page 553 of 2097