Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

doubt_3.mw

Hi, I am trying to do a simple think like

od2 := diff(x^3, x)+v+2 = 0

od3 := diff(v^2, v)+x+4 = 0

solve({(1),(2)},{x,v})

 

but with my code,  I am doing the exact same but getting the following error

Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({list, set})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received {[1316.872428*(-0.1500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+3.000000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-3.000000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(int(.2*(.1*t+1)*i__m2(t), t = 0 .. t__2))/N^.98-11.76000000/(N^.98*((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2))+1185.185185*(-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-6.0000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))/(N^.98*((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2))+6.00*(-75.50000000*N^2.02+45.45000000*N^1.02+306.00*N^0.2e-1)/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)-1.200000000/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)-9.6*(-75.37500000*N^3.02+45.30000000*N^2.02+303.00*N^1.02)/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)] = 0, [-650*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2+65843.62140*N^0.2e-1*(-0.6750000000e-3*t__2^2-0.1350000000e-1*t__2+0.7500000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`-0.9000000000e-1-0.1500000000e-1*t__2*(0.900e-1*t__2+.90)+3.000000*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.900e-1*t__2+.90)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.6914062500e-6*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.6914062500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.1464843750e-7*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.1464843750e-7*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.1064062500e-3*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.1064062500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(int(.2*(.1*t+1)*i__m2(t), t = 0 .. t__2))+65843.62140*N^0.2e-1*(-0.1500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+3.000000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-3.000000)*(-0.5625000000e-3*t__2^2-0.1125000000e-1*t__2+0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`-0.7500000000e-1-0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(int(.2*(.1*t+1)*i__m2(t), t = 0 .. t__2))+13168.72428*N^0.2e-1*(-0.1500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+3.000000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.2250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.2304687500e-6*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.3662109374e-8*t__2^4*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^4*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.5320312500e-4*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-3.000000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(.1*t__2+1)*i__m2(t__2)+588.0000000*N^0.2e-1*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2+.60*(98765.43210*N^0.2e-1*(-0.5859375000e-5*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.5859375000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.9796875000e-3*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.9796875000e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))*(0.900e-1*t__2+.90)+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.900e-1*t__2+.90)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*(0.5625000000e-3*t__2^2+0.1125000000e-1*t__2-0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+0.7500000000e-1+0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+98765.43210*N^0.2e-1*(-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-6.0000)*(-0.5625000000e-3*t__2^2-0.1125000000e-1*t__2+0.6250000000e-2*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`-0.7500000000e-1-0.1250000000e-1*t__2*(0.900e-1*t__2+.90))*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+i__m2(t__2))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)-.60*(98765.43210*N^0.2e-1*(-0.1953125000e-5*t__2^3*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^3*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+0.4898437500e-3*t__2^2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)^2*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-0.7500000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+6.0000*exp(0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))-6.0000)*exp(-0.1250000000e-1*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6))+int(i__m2(t), t = 0 .. t__2))*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-(0.1500000000e-2*T^2+0.3000000000e-1*T)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-6.00*(-25.00000000*N^3.02+22.50000000*N^2.02+300*N^1.02)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-.1700000000*T*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-2.4*(.1000000000*T-.2000000000)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-4*(0.1562500000e-3*T^2+0.1250000000e-1*T)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2-12.0*(0.2500000000e-1*T-.1000000000*N)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2+9.6*(-18.75000000*N^4.02+15.00000000*N^3.02+150*N^2.02)*(0.3750000000e-2*t__2^2+0.7500000000e-1*t__2-0.4166666667e-1*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+3/2+(1/12)*t__2*(0.900e-1*t__2+.90))/((1/12)*t__2*(0.450e-1*t__2^2+.90*t__2-.50*`#msup(msub(mi("\`t"),mi("2\`")),mn("2"))`+6)+t__2)^2] = 0}

 

Please help

Thanks in advance 

Unfortunately,  Optimization:-Maximize command in following example returns a not precise result (I use Maple 2020).

restart:
s1:= Optimization:-Maximize((x-2*y)/(5*x^2-2*x*y+2*y^2), {2*x^2 - y^2 + x*y=1})

Maple is running the following results:

I read help of  Maximize, It seems to be using only numerical methods .

 

The Minimize and Maximize commands use various methods implemented in a built-in library provided by the Numerical Algorithms Group (NAG). 

 

Can't Maple find a symbolic solution for extreme values under such constrained inequality or equality conditions?

Ps:

For the correct  symbolic  solution, we can try to  use Mathematica 12.

Maximize[{(x - 2*y)/(5*x^2 - 2*x*y + 2*y^2), 
  2*x^2 - y^2 + x*y == 1}, {x, y}]

  We can compare numerical sizes of Optimal solution between maple and mathematica. 

Digits:=20;
sqrt(2.)/4.

Another Problem:

If I accept numerical solutions of maple ,how do I estimate errors without knowing the exact solution ?

 

 

 

I am trying to compute the rank of the Commutator Matrix of a Lie algebra. That is, I wish to construct a matrix version of the multiplication table for a given matrix Lie algebra, and then compute the rank of this matrix.

 

Download CommutatorExample.mw
 

with(DifferentialGeometry); with(LieAlgebras)

``

``

M := [Matrix([[1, 0], [0, 0]]), Matrix([[0, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]

[Matrix(%id = 18446744078224010646), Matrix(%id = 18446744078224010766), Matrix(%id = 18446744078224003190)]

(1)

L := LieAlgebraData(M, Alg1)

_DG([["LieAlgebra", Alg1, [3, table( [ ] )]], [[[1, 3, 3], 1], [[2, 3, 3], -1]]])

(2)

``

DGsetup(L)

`Lie algebra: Alg1`

(3)

T := MultiplicationTable("LieTable")

Matrix(%id = 18446744078223968366)

(4)

``

``

``

``

 

 

I have the above, but I run into two issues:

1. It doesn't have matrix format, so Rank is undefined (I have tried convert(T,matrix) to no avail),

2. I need to be able to remove the first and second rows and columns from T (because these rows/columns are occupied by the Lie algebra's basis elements, and separating lines, respectively).

 

I believe that if I can convert T into a matrix somehow, I can simply use SubMatrix to remove the things I don't want, and then Rank should work.

 

Any help would be greatly appreciated!

 

P.S. Thanks to dharr1338 for the suggestion of including the worksheet, I'm very new to Maple and MaplePrimes, so I appreciate the patience.

Hi, I am working on a bification diagram and was wondering if there is a way to plot the stable and unstable curves onto one figure.

I have two curves, if the eq1<eq2 I would like to indicate when this happens, with a dashed line.

When eq1>eq3 I would like to indicate this with a soild line.

implicitplot, x[m] vs x[u] with axis[2]=[mode=log] 

r:=0.927: K:=1.8182*10^8:d[v]:=0.0038:d[u]:=2: delta:=1: p[m]:=2.5: M:=10^4: p[e]:=0.4: d[e]:=0.1: d[t]:=5*10^(-9): omega:=2.042: b:=1000: h[e]:=1000:h[u]:=1:h[v]:=10^4:

eq1 := r*d[t]*h[e]*x[u]^3+(r*h[e]*(-K*d[t]+d[t]*h[v]+d[e])+r*p[e]*x[m])*x[u]^2+(r*h[e]*(-K*d[t]*h[v]-K*d[e]+d[e]*h[v])+K*p[e]*(d[u]-r)*x[m])*x[u]-r*K*h[e]*d[e]*h[v];

eq2 := (d[t]*x[u]+d[e])*(2*r*x[u]/K+d[u]*p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])*(h[e]+p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e]))))-r)+d[u]*h[e]*x[u]*(p[e]*h[v]*x[m]/(h[v]+x[u])^2-d[t]*p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])))/(h[e]+p[e]*x[m]*x[u]/((h[v]+x[u])*(d[t]*x[u]+d[e])))^2

i have matrix M depend on x1 x2 x3 .... want limit of M. for sure can use loop like M[i,j]:=limit(M[i,j],[x1=0,x2=0,...]; i=1.. j=1..

want use map2 to do all at same time, try map2(limit,[x1=0,x2=0],M); gives error

Error, invalid input: limit expects its 1st argument, expr, to be of type Or(equation, algebraic), but received [x1 = 0, x2 = 0]

is possible to do using map or other thing not loop

 

Consider the family of functions "{`f__n`   : -infinity< n<infinity}," where the index n is
integer, and f__n; proc (R) options operator, arrow; R end proc.   It is known that diff(f__n(x), x) = `f__n-1`(x) for all n.

 

I want to convey that information to Maple.  For instance, given the input
diff(f[3](x),x), Maple should return f__2(x).  Similarly:
diff(f[3](x), x$2)                   should return   f__1(x)
f[4](x)*diff(f[3](x),x)^5   should return   f__4(x)*f__2(x)^5

What is a good way of doing that?

 

@ianmccr posted here about making help for a package using makehelp. Here I show how to do this with the HelpTools package.

The attached worksheet shows how to create the help database for the Orbitals package available at the Applications Center or in the Maple Cloud. The help pages were created as worksheets - start using an existing help page as a model - use View/Open Page As Worksheet and then save from there. The topics and other information are entered by adding Attributes under File/Document Properties - for example for the realY help page these are:

Active=false means a regular help page; Active=true means an example worksheet.

There may be several aliases, for example the cartesion help page also describes the fullcartesian command and so Alias is: Orbitals[fullcartesian],cartesian,fullcartesian and Keyword is: Orbitals,cartesian,fullcartesian

Once a worksheet is created for each help page they are assembled into the help database with the attached file. More information is in the attached file

Orbitals_Make_help_database.mw

Hello,

I have tried to get a simple matlab example of a fourier transform code to work in Maple. This is just to understand a simple fourier transform and eventually try some more difficult 2D transforms.

restart:
with(LinearAlgebra):
with(RandomTools):
with(orthopoly):
with(plots):
with(ArrayTools):
with(DiscreteTransforms):
Digits:=15:

# 1D Fourier Transform

Fs := 1000;                       # Sampling frequency                    
T := 1/Fs;                        # Sampling period       
L := 1500;                        # Length of signal
t := Vector(L, i -> i-1)*T:       # Time vector

f := Fs*Vector(floor(L/2)+1, i-> i-1)/L:   # Frequency                 


S:= Vector(L, i -> 0.7*sin(2.0*Pi*50*t[i]) + sin(2.0*Pi*120*t[i])):    # Signal


Z1 := FourierTransform(Vector(L, j->S[j])):              # DFT 
Z2 := Vector(L, i-> sqrt(Re(Z1[i])**2 + Im(Z1[i])**2)):  # Amplitude
                

FP1 := pointplot({seq([f[n],Z2[n]],n=1..floor(L/2)+1)}, labels=["Frequency","Amplitude"], connect=true, color=green):

display(FP1, axes=boxed);

The right answer should be a plot with frequencies at 50Hz and 120Hz, with amplitudes at 0.7 and 1.0, respectively. However my amplitude axes is off somehow and I don't understand why. 

Hello!

Could you help me please to plot a fuction with domain and complex range (Maple 2020.1). For example:

f := (x, w) -> exp(w*x*I)

x,w are real numbers

 

Hello!

I've just want to use indexes in functions, like this (Maple 2020.1)

f[l,m]:=(x,y)->x^k + y^m

But I can't get the result of it:

f[1,1](2,2)

Maple show me not 4, but the same function.

Hi, am trying to differentiate the following eq w.r.t t2 and N. But in t2 I am getting zero and in wrt N, an Error (non-algebraic expressions cannot be differentiated). But according to the article, I am following expression should come.

I am differentiating following

TCS := proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc

ode5 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, t__2) = 0

ode6 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, N) = 0

Error, non-algebraic expressions cannot be differentiated
 

following are the pre-requisite to use above (also in the attachment doubt_2.mw)

i__m1(t) = ((-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t)

i__m2(t) = (-(-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(-theta__m*t)

TC__m := A__m/(t__1+t__2)+(int(h__m*(i__m*t+1)*i__m1(t), t = 0 .. t__1))*(int(h__m*(i__m*t+1)*i__m2(t), t = 0 .. t__2))+P__m*I__om*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)+C__m*theta__m*(int(i__m1(t), t = 0 .. t__1)+int(i__m2(t), t = 0 .. t__2))/(t__1+t__2)

i__d(t) = (-(-c*t^2*theta__d^2+b*t*theta__d^2+2*c*t*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t)/theta__d^3+(-c*t__3^2*theta__d^2+b*t__3*theta__d^2+2*c*t__3*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t__3)/theta__d^3)*exp(-theta__d*t)

TC__d1 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__m*I__c*m*(int(i__d(t), t = M .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)

TC__d2 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/4)*a*c*N^alpha*t__3^4+(1/3)*a*b*N^alpha*t__3^3+(1/2)*a*N^alpha*t__3^2+M-t__3-(1/3)*a*c*N^alpha*t__3^3+(1/2)*a*b*N^alpha*t__3^2+a*N^alpha*t__3)/(t__1+t__2)

i__r(t) = (-(-c*t^2*theta__r^2+b*t*theta__r^2+2*c*t*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t)/theta__r^3+(-c*t__4^2*theta__r^2+b*t__4*theta__r^2+2*c*t__4*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t__4)/theta__r^3)*exp(-theta__r*t)

TC__r1 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*I__c*m*n*(int(i__r(t), t = N .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*N^4+(1/3)*a*b*N^alpha*N^3+(1/2)*a*N^alpha*N^2)/(t__1+t__2)

TC__r2 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*t__4^4+(1/3)*a*b*N^alpha*t__4^3+(1/2)*a*N^alpha*t__4^2+N-t__4-(1/3)*a*c*N^alpha*t__4^3+(1/2)*a*b*N^alpha*t__4^2+a*N^alpha*t__4)/(t__1+t__2)

TCS__1 := TC__m+TC__d1+TC__r1

TCS__2 := TC__m+TC__d1+TC__r2

TCS__3 := TC__m+TC__d2+TC__r1

TCS__4 := TC__m+TC__d2+TC__r2

 

Thanks in advance.

Hi,

I want to solve an equation(see the attached file) numerically, find  values of M that satisfy this equation and then plot the curve of M versus sigmai for those values of M that satisfy the mentioned equation. How can I do that with Maple?

 

eq.mw

MacDude posted a worksheet for creating help files using the makehelp command that I found very useful.  However, his worksheet created a table of contents that organized the command help pages under a single folder.  I wanted to create a help file table of contents with the commands organized into sub-folders under the main application folder. ie. Package Name,Folder Name, command. The help page for makehelp is not very informative; in particular the example that shows (purportedly) how to override the existing help pages with your own help file is very misleading.  Also, the description of the parameters to the browser option of the makehelp command is too vague. I needed an error message to tell me that the browser option expects parameters in the form List(Name,String).  In the end, I was able to get a folder/sub-folder structure using a structure [`Folder Name`,`Subfolder Name`,"Command"].  Sub-folders are sorted alphabetically. If anyone has a need, the attached worksheet shows how I created the table of contents structure. 

helpcode.mw

In the OrthogonalExpansions package, how can I change the summation variable to be n instead of i?


doubt_1.mw

Hi, I am trying to solve two simultaneous equations (for t1) they are as follows-

eq 1

i__m2(0) = (-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(0)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3+(-c*t__2^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__2)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(0)

eq 2

i__m1(t__1) = ((-c*t__1^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(-`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)

rhs(i__m2(0) = (-(-b*theta__m+theta__m^2-2*c)*exp(0)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(0)) = rhs(i__m1(t__1) = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1))

solve({-(-b*theta__m+theta__m^2-2*c)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3 = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1)}, [t__1]);
Warning, solutions may have been lost
 

Can someone, please help. Thanks in advance.

First 398 399 400 401 402 403 404 Last Page 400 of 2097