Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Does anyone use a windows 10 code editor like, emacs, vim, or other with good textual layout, error and type checking? for building procedure files (libraries)?

 

I am using Maple2019.   I have been using a code region started in a worksheet and then exported to mpl file.   Not sure if I have really seen a debugger with breakpoints, step-in/step-out, type checking?   Am I just not looking in the right area?

 

Best practices from programmers of maple procedures appreciated.

Bill

 

The uploaded worksheet contains two examples of the use of VectorCalculus[VectorSpace]. The first example seems explicable but the second does not.

I have tried and failed to find a full, clear explanation of how a vector describing a simple vector, spacecurve, or surface in the default vector space is transformed to appear in a user defined vector space.

Can anyone direct me to such an explanation, so that I can understand Maple's processing within the uploaded worksheet and enable me to use this Maple feature to future advantage?

VectorSpaceTest.mw

Why doesn't Maple show a solution to the following odesys of second order and not show an error?
 

Differential Equations Trebuchet, Phase II_2020-06-05

 

restart; with(VariationalCalculus); with(PDETools)

[ConjugateEquation, Convex, EulerLagrange, Jacobi, Weierstrass]

(1)

r1_num := 8; r2_num := 8; r3_num := 1; h_num := 5; m2_num := 1; m3_num := 20; theta3_num := r3_num^2*m3_num; g_num := 10; phi1_num_null := -h_num/r1_num; epsilon_num_null := 0

0

(2)

T := (1/2)*m2*((diff(phi1(t), t))^2*r1^2-2*(diff(phi1(t), t))*(diff(`ε`(t), t))*r1*r2*sin(phi1(t)+`ε`(t))+(diff(`ε`(t), t))^2*r2^2)+(1/2)*m3*(r3^2*(diff(phi1(t), t))^2*sin(phi1(t))^2+r3^2*(diff(phi1(t), t))^2*cos(phi1(t))^2)

(1/2)*m2*((diff(phi1(t), t))^2*r1^2-2*(diff(phi1(t), t))*(diff(epsilon(t), t))*r1*r2*sin(phi1(t)+epsilon(t))+(diff(epsilon(t), t))^2*r2^2)+(1/2)*m3*(r3^2*(diff(phi1(t), t))^2*sin(phi1(t))^2+r3^2*(diff(phi1(t), t))^2*cos(phi1(t))^2)

(3)

NULL

U := m2*g*(r1*sin(phi1(t))+r2*cos(`ε`(t)))-m3*g*r3*sin(phi1(t))

m2*g*(r1*sin(phi1(t))+r2*cos(epsilon(t)))-m3*g*r3*sin(phi1(t))

(4)

L := T-U = 0

(1/2)*m2*((diff(phi1(t), t))^2*r1^2-2*(diff(phi1(t), t))*(diff(epsilon(t), t))*r1*r2*sin(phi1(t)+epsilon(t))+(diff(epsilon(t), t))^2*r2^2)+(1/2)*m3*(r3^2*(diff(phi1(t), t))^2*sin(phi1(t))^2+r3^2*(diff(phi1(t), t))^2*cos(phi1(t))^2)-m2*g*(r1*sin(phi1(t))+r2*cos(epsilon(t)))+m3*g*r3*sin(phi1(t)) = 0

(5)

L_num := subs(r1 = r1_num, r2 = r2_num, r3 = 1, h = h_num, m2 = m2_num, m3 = m3_num, theta3 = theta3_num, g = g_num, L); combine(%)

42*(diff(phi1(t), t))^2-64*(diff(phi1(t), t))*(diff(epsilon(t), t))*sin(phi1(t)+epsilon(t))+32*(diff(epsilon(t), t))^2+120*sin(phi1(t))-80*cos(epsilon(t)) = 0

(6)

 

deq_phi1_num := EulerLagrange(L_num, t, phi1(t)); hz1 := convert(deq_phi1_num, list); deq_phi1_num := op(1, hz1)

-64*(diff(phi1(t), t))*(D(epsilon))(t)*cos(phi1(t)+epsilon(t))+120*cos(phi1(t))-64*(diff(diff(phi1(t), t), t))+64*((D@@2)(epsilon))(t)*sin(phi1(t)+epsilon(t))+64*(D(epsilon))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-20*(diff(diff(phi1(t), t), t))*sin(phi1(t))^2-20*(diff(diff(phi1(t), t), t))*cos(phi1(t))^2 = 0

(7)

``

deq_epsilon_num := EulerLagrange(L_num, t, epsilon(t)); hz2 := convert(deq_epsilon_num, list); deq_epsilon_num := op(1, hz2)

-64*(D(phi1))(t)*(diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))+80*sin(epsilon(t))+64*((D@@2)(phi1))(t)*sin(phi1(t)+epsilon(t))+64*(D(phi1))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-64*(diff(diff(epsilon(t), t), t)) = 0

(8)

``

ode_sys := deq_phi1_num, deq_epsilon_num

-64*(diff(phi1(t), t))*(D(epsilon))(t)*cos(phi1(t)+epsilon(t))+120*cos(phi1(t))-64*(diff(diff(phi1(t), t), t))+64*((D@@2)(epsilon))(t)*sin(phi1(t)+epsilon(t))+64*(D(epsilon))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-20*(diff(diff(phi1(t), t), t))*sin(phi1(t))^2-20*(diff(diff(phi1(t), t), t))*cos(phi1(t))^2 = 0, -64*(D(phi1))(t)*(diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))+80*sin(epsilon(t))+64*((D@@2)(phi1))(t)*sin(phi1(t)+epsilon(t))+64*(D(phi1))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-64*(diff(diff(epsilon(t), t), t)) = 0

(9)

NULL

ics := phi1(0) = phi1_num_null, (D(phi1))(0) = 0, epsilon(0) = epsilon_num_null, (D(epsilon))(0) = 0

phi1(0) = -5/8, (D(phi1))(0) = 0, epsilon(0) = 0, (D(epsilon))(0) = 0

(10)

infolevel := 5

5

(11)

sol_num := dsolve({ics, ode_sys}, {epsilon(t), phi1(t)}, numeric)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 4, (2) = 4, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.3220560812572312e-2, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..4, {(1) = .0, (2) = .0, (3) = -.625, (4) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..4, {(1) = .1, (2) = .1, (3) = .1, (4) = .1}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = 0, (2) = 0, (3) = 0, (4) = 0}, datatype = integer[8]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..4, {(1) = .0, (2) = .0, (3) = -.625, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = -.917036362501732, (3) = .0, (4) = 1.567322913492791}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = epsilon(t), Y[2] = diff(epsilon(t),t), Y[3] = phi1(t), Y[4] = diff(phi1(t),t)]`; YP[2] := (64*sin(Y[3]+Y[1])*(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+120*cos(Y[3])+64*Y[2]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))-(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+80*sin(Y[1])+64*Y[4]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))*(-20*cos(Y[3])^2-20*sin(Y[3])^2-64))/(1280*cos(Y[3])^2+1280*sin(Y[3])^2+4096-4096*sin(Y[3]+Y[1])^2); YP[4] := -2*(8*cos(Y[3]+Y[1])*sin(Y[3]+Y[1])*Y[4]^2+8*Y[2]^2*cos(Y[3]+Y[1])+10*sin(Y[1])*sin(Y[3]+Y[1])+15*cos(Y[3]))/(16*sin(Y[3]+Y[1])^2-5*cos(Y[3])^2-5*sin(Y[3])^2-16); YP[1] := Y[2]; YP[3] := Y[4]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = epsilon(t), Y[2] = diff(epsilon(t),t), Y[3] = phi1(t), Y[4] = diff(phi1(t),t)]`; YP[2] := (64*sin(Y[3]+Y[1])*(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+120*cos(Y[3])+64*Y[2]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))-(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+80*sin(Y[1])+64*Y[4]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))*(-20*cos(Y[3])^2-20*sin(Y[3])^2-64))/(1280*cos(Y[3])^2+1280*sin(Y[3])^2+4096-4096*sin(Y[3]+Y[1])^2); YP[4] := -2*(8*cos(Y[3]+Y[1])*sin(Y[3]+Y[1])*Y[4]^2+8*Y[2]^2*cos(Y[3]+Y[1])+10*sin(Y[1])*sin(Y[3]+Y[1])+15*cos(Y[3]))/(16*sin(Y[3]+Y[1])^2-5*cos(Y[3])^2-5*sin(Y[3])^2-16); YP[1] := Y[2]; YP[3] := Y[4]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 0., (3) = 0., (4) = -.625000000000000}); _vmap := array( 1 .. 4, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 4 ) = (4)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, epsilon(t), diff(epsilon(t), t), phi1(t), diff(phi1(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(12)

odeplot(sol_num, [t, phi1(t), epsilon(t)], t = 0 .. .5); odetest(sol_num, ode_sys)

Error, (in ODEtools/info) Required a specification of the indeterminate function

 

``


 

Download Differential_Equations_Trebuchet_Phase_II_2020-06-05.mw

Hi, 

I have an expression like this one 
x := -h(U) + f( f( g( f(U+W*X)*V) + g( f(W)*g(V) ) ) );
I and I would like to extract the names f, g, h of the functions it contains.
I'v been stucked on this problem for a while and I finally found this could be done doing this 
op~(0, indets(x, function({name, `+`, `*`})))

I don't understand why this works not even if it is the good way to proceed (the few examples I've built seem to prove this command works).
What way would you use to tackle this problem?

TIA

Hello again,

 

I have two functions f and h, that I want to show by pointplot as a diagramm (with a range from -10 to +10).

I know how to do it with "normal" functions, but what if for example the function f has 2 variables but h only has one?

f:= (sin(sqrt(x^2+y^2)))/(sqrt(x^2+y^2));

h:= f(x, 1.8);

These are the two functions.

 

So far I've made a list for each function for x  = -10 to x = 10

ListF:= [seq(f, x = -10..10, 1)];

ListH:= [seq(h, x = -10..10, 1)];

 

But I don't know how to go from there. Can I already use pointplot to connect the two lists? Or do I have to connect these two lists as one (which is what I originally planned) But I don't know how to do that, without always copying the results of one and then the other and putting both in a new list.

e.g Both lists show the values for the function for x = -10..10. If the first value of ListF is 5 and the first value of ListH is 1, then connecting both in a new list ListFH: = [[5,1]...], followed by the 9 other values.)

(5 and 1 aren't the actual results, I just used them for simplification.)

(Even if this isn't the right beginning for the solution of my original problem, I still want to know if it's even possible to take all values of one list of a function 'a' and all values of a second list of function 'b' and put them in a new list 'c' with c: = [a,b] without manually putting them together. So that the first value of list a is paired with the first of list b, the second of list a with the second of list b, etc... I hope you know what I mean)

In regards to my original problem I thought I could do something like this:

pointplot( [ [ListF], [ListH] ]);

 

I'm grateful for every answer :)

 

 

 

 

 

 

 

When making a function and using the return type, I found Maple is not catching the case when the function returns wrong type.

Actually there are two issues in this example I like to ask about. First, here is the example

restart;
kernelopts(assertlevel):=2;
TypeTools:-AddType(type_A, record(x::integer)):

foo:=proc( A::type_A ) ::type_A;  #this is what return type should be
     print( type(A,'type_A')); #this prints TRUE
     A:-x :=1.5; #opps, wrong type, changes type of record now!
     print( type(A,'type_A')); #This now prints FALSE
     return A;
end proc:

A:=Record('x' = 1);
B:=foo(A):
eval(B)

The call to foo() goes through as expected since type is correct.

First issue: Inside the function doing A:-x :=1.5;  changed the type of record now, since is supposed to be integer and now become real. Is there a way to have Maple detect this at run time?

Second issue: The function was defined to return type_A  but due to this overwriting the field of the record by wrong value, it is no longer type_A  (the print now says false). But why Maple did not detect this? Since the function is defined to only return type_A ?

Is it possible to change the code above to catch these type mistakes I made?

given A := [[1, 0,9], [5, 0, 6], [4, 0, 0]]; and to remove 0 from each entry, I used map2(remove,has,A,0) which gives 

                   [[1, 9], [5, 6], [4]]

Is it possible to do the same thing using ~ notation for mapping?  (Element-wise Operator). Where now each element is each entry in A? I can't figure what the syntax would be if possible.  remove(has,??,0)~A

For exmaple in Mathematica one would use what is called slot number #. So the above mapping would look like in Maple as doing remove(has,#,0)~A  where now acts as place holder to be filled by each entry taken one at a time from list A as the mapping runs.  But do not know if this is possible in Maple.   

map2 does the job, but can be tricky to use when the function to map takes number of different arguments.

One work around is to make seperate function, and use that for mapping, as follows

f:= x->remove(has,x,0);
f~(A)

which gives  [[1, 9], [5, 6], [4]] correctly. 

So I find the above easier to understand and more clear than map2, and I am not unhappy with it, and so I see no reason to use map2 vs. ~ in this case.

But wanted to see if it was possible to use ~ without making separate function, but do it in-line if you well (using what is called pure function, or unamed function in functional programming).

 

I am trying to decide which is better to use, a table or Record, to pass lots of information back and forth between functions inside say a personal Maple package.

So instead of passing each argument on its own, as normally one does when calling a function, instead all the input is put into one table, or into one record, and this is passed instead. So the function always takes as input one argument.

When the function returns result, it also does the same. It updates any fields it needs in the table or in the record, o rmay be add new field, which the caller would have to know about, (since same person has programmed both) and returns that.

I find this easier to handle, than passing each argument on its own.  And on return, rather than return many results in list or sequence and making sure they are in correct order, the function simply update the fields in the table or the record. No problems with wrong order here as caller will read these fields by name later on.

So I made same toy example, one using table and one using record. 2 numbers are passed to a function. The function returns the result of multiplication by adding new field into the table/record.  Here is version using table.

restart;
foo:=proc(input::table)
   local x,y,result,updated;

   x      := input["x"];
   y      := input["y"];
   result := x*y;

   #finished computation. Return result. Copy all content
   #of passed table first, then add new field to write result to

   updated := eval(input);
   updated["result"] := result;
   return updated;      

end proc:

Called using

input:=table(["x"=4,"y"=6]);
r:=eval(foo(input)):
print(r["result"]);

prints 24

 

Here is version using Record

foo2:=proc(input::record)
   local x,y,result,updated;

   x      := input:-x;
   y      := input:-y;
   result := x*y;

   #finished computation. Return result
   #could not update input Record in place, even after deep copy
   #since "result" is not an existing field. So have to make a new Record
   #this is a problem, since this function need to know all fields now in Record

   updated := Record("x"=x,"y"=y,"result"=result);
   return updated;      

end proc:

called as

input:=Record( "x" = 4, "y"=6);
r:=eval(foo2(input)):
print(r:-result);

prints 24

 

Some observations: I found the table more flexible. Because the function called can add a new field to the table, even if this field do not exist. If called function wants to add a new result back to the caller, it can do this.  With Record, all fields have to be decided on when the record is created. So the function has to create new record from all the old fields and add the new field to do this.

This might not be a big problem actually, as one can decide at top of package what all the possible fields that needs to be in the Record, and creates such Record, giving default values for al field. So now Record will have all possible fields in it.  Using this the above can now be written as

restart;
foo3:=proc(input::record)
   local x,y,result;

   x      := input:-x;
   y      := input:-y;
   result := x*y;

   #finished computation. Return result  
   input:-result := result; 
   return input;      

end proc:

And called as

input:=Record( 'x' = 4, 'y'=6, 'result'=NULL);
r:=eval(foo3(input)):
print(r:-result);

24

But it seems both methods suffer from the fact that type checking on the types of the arguments now inside is lost. (But I seem to remember one can do type checking on fields for a Record somehow). So if this is possible, this will be one advantage of Record over table.  But again, it is possible in both methods to check type of field by using whattype() or type() manually if needed.

But other than these two issues, and assuming one wants to pick between table and record, the question is, why choose Record over table?  If the main purpose is to just to pass information back and forth? Is there some hidden advatage to using Record I am overlooking that tables do not provide (again, for the purpose of passing arguments and results between functions and no more).

For me, I see table doing what I want from a record, but a little bit easier to work with as well (field names can be strings for example).  So with table one does  A["x"]=.....  While with Record one does A:-x=...

For me, I see a Maple table just like Python dictionary, so easy to underatand and work with.

Any thoughts from the experts on this subject? 

I am trying to count of the number of primes p such that when p is concatenated with 1 (ie p1, or 10*p+1),  if p1 is composite then we record the result 1, else  2. This gives the minimum k for which the concatenation pk is composite, and k is always either 1 or 2. It would be interesting to compare the number of primes with 1 and those with 2 up to a given max. I have already written a code which calculates the 1 or 2 for each prime but have not managed to adapt it keep count.
 

I would like to have a code to keep a count  of the 1s and 2s, thus being able to say that up to 10^k we see {a, b} where a is the number of primes with "1" and b is the number with "2".

Ideally I would like to be able to output plots of these data for any k =1,2,3,... up to a pre declared maximum k value, so as to make comparative graphs. I do not know how to organise the counting process, or if it is possible to get Maple to do the plots as well. Can anyone please assist me with this? I have Maple 2017.

Best regards,

David.

 

Hi guys I showing the problem in the following document, and the file is attached

restart; Setup(mathematicalnotation = true); with(Physics); Setup(op = {A, B, S, omega, v, x, x_, `&omega;_`})

_______________________________________________________; "_noterminate"

(1)

 

 

ok now here is the question: I first initialize some matrices (noncommutative objects) with Setup(op = {A, B, S, omega, v, x, x_, `&omega;_`}) then I have an expression which is:

 

(Iota[c][i]*Dagger(diff(x[i](t), t)).Dagger(A[i]).A[i].(diff(x[i](t), t)))/L[i](t)^2

Iota[c][i]*Physics:-`*`(Physics:-Dagger(diff(x[i](t), t)), Physics:-Dagger(A[i]), A[i], diff(x[i](t), t))/L[i](t)^2

(2)

 

Now I want to substitute the expression Dagger(A[i])*A[i]with -A[i]^2,so I write
eval(Iota[c][i]*Physics[`*`](Physics[Dagger](diff(x[i](t), t)), Physics[Dagger](A[i]), A[i], diff(x[i](t), t))/L[i](t)^2, Dagger(A[i])*A[i] = -A[i]^2)

Iota[c][i]*Physics:-`*`(Physics:-Dagger(diff(x[i](t), t)), Physics:-Dagger(A[i]), A[i], diff(x[i](t), t))/L[i](t)^2

(3)

now guess what it doesn't substitute the expression. Help me please !!. for now I have some clues:
1-its because I initialize the Matrices as noncommutative objects.
2-altering the substitution expression to this one will fix the issue (but what the hell!! let's say I beside of x I have y so now I most write a similar expression for y and so on)

  Dagger(diff(x[i](t), t))*Dagger(A[i])*A[i]*(diff(x[i](t), t)) = -Dagger(diff(x[i](t), t))*A[i]^2*(diff(x[i](t), t))

Physics:-`*`(Physics:-Dagger(diff(x[i](t), t)), Physics:-Dagger(A[i]), A[i], diff(x[i](t), t)) = -Physics:-`*`(Physics:-Dagger(diff(x[i](t), t)), Physics:-`^`(A[i], 2), diff(x[i](t), t))

(4)

eval(Iota[c][i]*Physics[`*`](Physics[Dagger](diff(x[i](t), t)), Physics[Dagger](A[i]), A[i], diff(x[i](t), t))/L[i](t)^2, Physics[`*`](Physics[Dagger](diff(x[i](t), t)), Physics[Dagger](A[i]), A[i], diff(x[i](t), t)) = -Physics[`*`](Physics[Dagger](diff(x[i](t), t)), Physics[`^`](A[i], 2), diff(x[i](t), t)))

-Iota[c][i]*Physics:-`*`(Physics:-Dagger(diff(x[i](t), t)), Physics:-`^`(A[i], 2), diff(x[i](t), t))/L[i](t)^2

(5)

 

``


 

Download MapleProblem.mw

 

To do this there should be a plotoption grid[ ], but probably obselote ?
Task (7) ask to plot the curve in rectangle [-,2,2]x[-4,5] : what rectangle?

Try using the Plotbuilder ( )command too( this generates also code )  and  interactive plotbuilder
Plotting this portion of curve in rectangle is not working yet.

ex_set_2_task_7.mw

How can I generate a code to plot the optimals; h, chi and psi?

 

Hi,

I need taylor expasion of

A(w):=M/sqrt(M^2+2*w)-mup*sqrt(((mu*M^2+3*sigmap-2*w)-sqrt((mu*M^2+3*sigmap-2*w)^2-12*mu*sigmap*M^2))/(6*sigmap))

I used taylor(A,w,4), but I had a problem!

If I know that A(w) is a real function, how can I remove ‘csgn’ from the  ‘taylor(A,w,4)’ command:

Thanks.

12.mws

There are discrepancies between Maple's solution of Fourier transforms and the results printed in USA NIST Handbook of Mathematical Functions, page 30

fourier(exp(-a*abs(x))/sqrt(abs(x)),x,s) assuming a>0;
            /   /   (1/2)   (1/2)                (1/2)  
        1   |   |2 2      Pi      signum(s - _U1)       
       ---- |int|-------------------------------------,
       2 Pi |   |       /   2    \                      
            |   |       |_U1     |          (1/2)       
            |   |     a |---- + 1| (s - _U1)            
            |   |       |  2     |                      
            \   \       \ a      /                      

                                    \\
                                    ||
         _U1 = -infinity .. infinity||
                                    ||
                                    ||
                                    ||
                                    ||
                                    //


For this transform of
                 "exp(-a*abs(x))/sqrt(abs(x))"

 the result in the NIST table is
          "sqrt(a + sqrt(a^2 + s^2))/sqrt(a^2 + s^2)"

 .
fourier(sinh(a*t)/sinh(Pi*t),x,s) assuming a>-Pi, a<Pi;
                    2 sinh(a t) Pi Dirac(s)
                    -----------------------
                          sinh(Pi t)       

For this transform of sinh(a*x)/sinh(Pi*x)   the result in the NIST table is
                         "1/sqrt(2*Pi)"  "sin(a)/(cosh(s) + cos(a))"

 
fourier(cosh(a*t)/cosh(Pi*t),x,s) assuming a>-Pi, a<Pi;
                    2 cosh(a t) Pi Dirac(s)
                    -----------------------
                          cosh(Pi t)       

For this transform of cosh(a*x)/cosh(Pi*x) the result in the NIST table is  
                          "sqrt(2/Pi) cos(a/2)*cosh(s/2)/(cosh(s) + cos(a))"

These disparities are significant, apart from the fact that Maple failed to solve the first example above.

 

Hi, 

Is it possible to define a linear idempotent operator in Maple?
I found no clue in the define help page.
To fix the ideas, an example could be the transposition operator on the ring of matrices

Thanks in advance

First 419 420 421 422 423 424 425 Last Page 421 of 2097