Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

I am trying to find out the stiffness matrix of composite by using iterative loop that sums over each laminate and adds the result to the previously calculated matrix 

D=null matrix

for i to 4 do Dply := evalf(evalm((1/3)*Q[i]*(z(i+1)^3-z(i)^3))); D := evalm(D+Dply) end do;
evalm(D);

although the values are coming out fine but in the diagonalm elements, it shows the true value + _rtable[4456495426] which I am not able to figure out why is it coming?

 

how i can trust in DirectSearch solution result.is there any creteria?

my variable is intensity.

this is my code:

ep0 := 1/(4*3.14); el := 8.54*10^(-2); hbar := 1; vf := 1/300; kb := 1; tem := 2.586*10^(-2); ci := 1; p := 1.458*10^16; beta := 2; ai := 7.1*10^(-4); bi := ai/sqrt(3); enph := .196; d := enph/(kb*tem); n0 := 1/(exp(enph/(kb*tem))-1); gama := hbar*vf; intensity := 10000001; w := 1.55; impurity := 7.2*10^3;

g := hbar*beta/(bi^2*sqrt(2*p*enph)); aa := g^2*(n0+1)/(2*Pi*hbar*gama^2); bb := g^2*n0/(2*Pi*hbar*gama^2); cc := 2/(Pi*gama^2); l := (1*hbar)*w/(2*kb*tem);u := el^2*intensity/(32*w*hbar^2);

 

DirectSearch:-SolveEquations([op([((enph*ln(1+exp(c+enph/(kb*tem)))/(kb*tem)-polylog(2, -exp(c))+polylog(2, -exp(c+enph/(kb*tem))))*enph*(kb*tem)^2-(enph^2*ln(1+exp(c+enph/(kb*tem)))/(kb^2*tem^2)+2*enph*polylog(2, -exp(c+enph/(kb*tem)))/(kb*tem)+2*polylog(3, -exp(c))-2*polylog(3, -exp(c+enph/(kb*tem))))*(kb*tem)^3+(-exp(b)*enph*ln(1+exp(c+enph/(kb*tem)))+exp(c+d)*enph*ln(1+exp(b-d+enph/(kb*tem)))+exp(b)*kb*tem*polylog(2, -exp(c))-exp(c+d)*kb*tem*polylog(2, -exp(b-d))-exp(b)*kb*tem*polylog(2, -exp(c+enph/(kb*tem)))+exp(c+d)*kb*tem*polylog(2, -exp(b-d+enph/(kb*tem))))*enph*(kb*tem)^2/((exp(b)-exp(c+d))*kb*tem)+(exp(b)*enph^2*ln(1+exp(c+enph/(kb*tem)))-exp(c+d)*enph^2*ln(1+exp(b-d+enph/(kb*tem)))+2*exp(b)*enph*kb*tem*polylog(2, -exp(c+enph/(kb*tem)))-2*exp(c+d)*enph*kb*tem*polylog(2, -exp(b-d+enph/(kb*tem)))+2*exp(b)*kb^2*tem^2*polylog(3, -exp(c))-2*exp(c+d)*kb^2*tem^2*polylog(3, -exp(b-d))-2*exp(b)*kb^2*tem^2*polylog(3, -exp(c+enph/(kb*tem)))+2*exp(c+d)*kb^2*tem^2*polylog(3, -exp(b-d+enph/(kb*tem))))*(kb*tem)^3/((exp(b)-exp(c+d))*kb^2*tem^2))*bb+u*(1/(1+exp(-l-c))-1/((1+exp(-l-c))*(1+exp(l-b))))-(((1*enph)*(enph-2*kb*tem*ln(1+exp(-b+enph/(kb*tem))))/(2*kb^2*tem^2)+2*kb^2*tem^2*(-polylog(2, -exp(-b+enph/(kb*tem)))+polylog(2, -cosh(b)+sinh(b))))*enph*(kb*tem)^2-(enph^2*(enph-3*kb*tem*ln(1+exp(-b+enph/(kb*tem))))-6*kb^2*tem^2*(enph*polylog(2, -exp(-b+enph/(kb*tem)))+kb*tem*(-polylog(3, -exp(-b+enph/(kb*tem)))+polylog(3, -cosh(b)+sinh(b)))))*(kb*tem)^3/(3*kb^3*tem^3)-(-exp(b)*enph^2+exp(c+d)*enph^2-2*exp(c+d)*enph*kb*tem*ln(1+exp(-b+enph/(kb*tem)))+2*exp(b)*enph*kb*tem*ln(1+exp(-c-d+enph/(kb*tem)))+2*exp(c+d)*kb^2*tem^2*polylog(2, -exp(-b))-2*exp(b)*kb^2*tem^2*polylog(2, -exp(-c-d))-2*exp(c+d)*kb^2*tem^2*polylog(2, -exp(-b+enph/(kb*tem)))+2*exp(b)*kb^2*tem^2*polylog(2, -exp(-c-d+enph/(kb*tem))))*enph*(kb*tem)^2/((2*(-exp(b)+exp(c+d)))*kb^2*tem^2)-(exp(b)*enph^3-exp(c+d)*enph^3+3*exp(c+d)*enph^2*kb*tem*ln(1+exp(-b+enph/(kb*tem)))-3*exp(b)*enph^2*kb*tem*ln(1+exp(-c-d+enph/(kb*tem)))+6*exp(c+d)*enph*kb^2*tem^2*polylog(2, -exp(-b+enph/(kb*tem)))-6*exp(b)*enph*kb^2*tem^2*polylog(2, -exp(-c-d+enph/(kb*tem)))+6*exp(c+d)*kb^3*tem^3*polylog(3, -exp(-b))-6*exp(b)*kb^3*tem^3*polylog(3, -exp(-c-d))-6*exp(c+d)*kb^3*tem^3*polylog(3, -exp(-b+enph/(kb*tem)))+6*exp(b)*kb^3*tem^3*polylog(3, -exp(-c-d+enph/(kb*tem))))*(kb*tem)^3/((3*(-exp(b)+exp(c+d)))*kb^3*tem^3))*aa-u*(1/(1+exp(l-b))-1/((1+exp(-l-c))*(1+exp(l-b)))) = 0, -cc*polylog(2, -exp(b))+cc*polylog(2, -exp(-c))-impurity = 0])], tolerances = 10^(-8), evaluationlimit = 20000)

 

Is it within the Physics environment possible to specify two sets, A and B, say, of quantities for which the following holds?

1.) any two elements of A anticommute,

2.) any two elements of B anticommute (as well), but

3.) any quantity from A commutes (not anticommutes) with any quantity from B.

Does there exist a Frobenius Group which is not  neither a Dihedralgroup nor  Symm(3) ?

 

Best regards

 

Kurt Ewald

Hello,
I have a system of first order diff. equations which I would like to solve symbolically. Unfortunately, Maple does not solve the system. Do anybody have suggestions how can I solve this system (please see below):

diff(S(t), t) = -eta*(C[max]*w*N-alpha*Q(t))*K(t)*S(t)/(w*N*(S(t)+K(t))),

diff(K(t), t) = S(t)*((z*eta*alpha*(C[max]*w*N-alpha*Q(t))*S(t)-upsilon*(eta*alpha^2*Q(t)^2-2*C[max]*w*N*eta*alpha*Q(t)+((-N*w+z)*alpha+N*C[max]^2*w*eta)*N*w))*K(t)^2+(2*((1/2)*z*eta*(C[max]*w*N-alpha*Q(t))*S(t)+N*w*upsilon*(N*w-z)))*S(t)*alpha*K(t)+N*S(t)^2*w*alpha*upsilon*(N*w-z))/((K(t)^2*alpha*z+3*S(t)*K(t)*alpha*z+S(t)*(2*S(t)*z*alpha+upsilon*(C[max]*w*N-alpha*Q(t))))*(S(t)+K(t))*N*w),

diff(Q(t), t) = (-alpha*z*(z*eta*(C[max]*w*N-alpha*Q(t))*K(t)+N*w*upsilon*(N*w-z))*S(t)^2+(-z^2*eta*alpha*(C[max]*w*N-alpha*Q(t))*K(t)^2-(eta*alpha^2*Q(t)^2-2*C[max]*w*N*eta*alpha*Q(t)+N*w*((2*N*w-2*z)*alpha+N*C[max]^2*w*eta))*z*upsilon*K(t)-N*w*upsilon^2*(N*w-z)*(C[max]*w*N-alpha*Q(t)))*S(t)-N*w*z*alpha*upsilon*K(t)^2*(N*w-z))/((2*S(t)^2*alpha*z+(3*z*alpha*K(t)+upsilon*(C[max]*w*N-alpha*Q(t)))*S(t)+K(t)^2*alpha*z)*N*w*upsilon)

where initials conditions are:

S(0) = S0, K(0) = K0, Q(0) = Q0

Thanks,

Dmitry

 

 

 

very slow cause my computer have sound and overheat, still can not 

calculated result

%c := Old_Asso_eigenvector1, a := Old_Asso_eigenvector3,

%b := Old_Asso_eigenvector2

% b <= c, a <= c,

% a ^ c = a, a V c = c

% b ^ c = b, b V c = c

restart;
with(ExcelTools):
with(ListTools):
with(DynamicSystems):
filename := "1207.HK";
open3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "B2:B100");
high3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "C2:C100");
low3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "D2:D100");
close3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "E2:E100");
with(CurveFitting):
n := 31;
f := Vector(n);
f2 := Vector(n);
open2 := Vector(n);high2 := Vector(n);gain2 := Vector(n);algebra2 := Vector(n);creative2 := Vector(n);creative3 := Vector(n);
upper2 := Vector(n);lower2 := Vector(n);upperloweratio := Vector(n);
deltaopen2 := Vector(n); deltahigh2 := Vector(n); deltalow2 := Vector(n); deltaclose2 := Vector(n);
logn := Vector(n);
for i from 0 to n-4 do
open2[i+1] := PolynomialInterpolation([[0,open3[n-i][1]],[1,open3[n-(i+1)][1]],[2,open3[n-(i+2)][1]],[4,open3[n-(i+3)][1]]],t):
high2[i+1] := PolynomialInterpolation([[0,high3[n-i][1]],[1,high3[n-(i+1)][1]],[2,high3[n-(i+2)][1]],[4,high3[n-(i+3)][1]]],t):
low2[i+1] := PolynomialInterpolation([[0,low3[n-i][1]],[1,low3[n-(i+1)][1]],[2,low3[n-(i+2)][1]],[4,low3[n-(i+3)][1]]],t):
if (close3[i+1][1]/close3[i+2][1]-1) < 0 then
gain2[i+1] := -1*round(100*abs(close3[i+1][1]/close3[i+2][1]-1)):
else
gain2[i+1] := round(abs(100*(close3[i+1][1]/close3[i+2][1]-1))):
end if;
deltaclose2[i+1] := close3[i+1][1] - close3[i+2][1];
deltahigh2[i+1] := high3[i+1][1] - high3[i+2][1];
deltaopen2[i+1] := open3[i+1][1] - open3[i+2][1];
logn[i+1] := ln(close3[i+1][1]/close3[i+2][1]);
f[i+1] := (high2[i+1] - open2[i+1])/4*1.8:
f2[i+1] := (open2[i+1] - low2[i+1])/4*1.8:
creative2[i+1] := simplify(((((close3[i+1][1]-close3[i+2][1]) + x)^2 -(close3[i+1][1]-close3[i+2][1])^2))/x)-x;
creative3[i+1] := simplify(((((close3[i+1][1]-close3[i+2][1]) + x)^3 -(close3[i+1][1]-close3[i+2][1])^3))/x);
upper2[i+1] := high3[i+1]-close3[i+1];
lower2[i+1] := close3[i+1]-low3[i+1];
upperloweratio[i+1] := round((lower2[i+1]/upper2[i+1])[1]);
od;
with(LinearAlgebra):
HilbertConj := proc(Px,Py)
return MatrixMatrixMultiply(Px,Py);
end proc:
HilbertDisj := proc(Px,Py)
return Px+Py- MatrixMatrixMultiply(Px,Py);
end proc:

t:=1;
i := 0;
InputMatrix3 := Matrix([[xxx, close3(t+1+i) , close3(t+2+i)],
[close3(t+1+i) , close3(t+2+i),0],
[close3(t+2+i),0 , 0]]):
InputMatrix3b := Matrix([[close3(t+1+i), close3(t+2+i) , close3(t+3+i)],
[close3(t+2+i) , close3(t+3+i),0],
[close3(t+3+i),0 , 0]]):
InputMatrix3c := Matrix([[close3(t+2+i), close3(t+3+i) , close3(t+4+i)],
[close3(t+3+i) , close3(t+4+i),0],
[close3(t+4+i),0 , 0]]):
m := MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3);
eigenvalues1 := Eigenvalues(m);
sys1 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[1],0,0],[0,eigenvalues1[1],0],[0,0,eigenvalues1[1]]]), Matrix([[x],[y],[z]]));
%solve([sys1[1][1],sys1[2][1],sys1[3][1]], [x,y,z]);
sol1 := solve([sys1[1][1],sys1[2][1]], [x,y,z]);

sys2 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[2],0,0],[0,eigenvalues1[2],0],[0,0,eigenvalues1[2]]]), Matrix([[x],[y],[z]]));
%solve([sys2[1][1],sys2[2][1],sys2[3][1]], [x,y,z]);
sol2 := solve([sys2[1][1],sys2[2][1]], [x,y,z]);

sys3 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[3],0,0],[0,eigenvalues1[3],0],[0,0,eigenvalues1[3]]]), Matrix([[x],[y],[z]]));
%solve([sys3[1][1],sys3[2][1],sys3[3][1]], [x,y,z]);
sol3 := solve([sys3[1][1],sys3[2][1]], [x,y,z]);

Old_Asso_eigenvector1 := Matrix([[rhs(sol1[1][1]),rhs(sol2[1][1]),rhs(sol3[1][1])],[rhs(sol1[1][2]),rhs(sol2[1][2]),rhs(sol3[1][2])],[rhs(sol1[1][3]),rhs(sol2[1][3]),rhs(sol3[1][3])]]);
Old_Asso_eigenvector2 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3b), InputMatrix3b)):
Old_Asso_eigenvector3 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3c), InputMatrix3c)):

% b <= c, a <= c, c := Old_Asso_eigenvector1, a := Old_Asso_eigenvector3, b := Old_Asso_eigenvector2
testa := HilbertConj(Old_Asso_eigenvector3[2], Old_Asso_eigenvector1);
testb := HilbertDisj(Old_Asso_eigenvector3[2], Old_Asso_eigenvector1);
testc := HilbertConj(Old_Asso_eigenvector2[2], Old_Asso_eigenvector1);
testd := HilbertDisj(Old_Asso_eigenvector2[2], Old_Asso_eigenvector1);

sysa := testa[1][1] = Old_Asso_eigenvector3[2][1][1];
sysb := testb[1][1] = Old_Asso_eigenvector1[2][1][1];
sysc := testc[1][1] = Old_Asso_eigenvector2[2][1][1];
sysd := testd[1][1] = Old_Asso_eigenvector1[2][1][1];

solve(sysa, xxx);

X belongto A, eigenvector(X) = 0

from this statement , 

using linearalgebra package eigenvectors function

the eigenvector matrix [3][1],[3][2],[3][3] are 1 , contradict 1=0

so, need to find another kind of eigenvector in terms of algebra 

using original basic calculation solve, however got error

 

m := Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]]);
eigenvector1 := Eigenvectors(m);
solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0,
eigenvector1[2][3][1]=0, eigenvector1[2][3][2]=0, eigenvector1[2][3][3]=0]
);

solve(
[eigenvector1[2][1][1]=0, eigenvector1[2][1][2]=0, eigenvector1[2][1][3]=0,
eigenvector1[2][2][1]=0, eigenvector1[2][2][2]=0, eigenvector1[2][2][3]=0]
);

 

eigenvalue1 :=
(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue2 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a5*a6

...

eigenvalue3 :=
-(1/12)*(36*a7*a1*a3+108*a7*a2*a6+

...

 

solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue1,0,0],[0,eigenvalue1,0],[0,0,eigenvalue1]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue2,0,0],[0,eigenvalue2,0],[0,0,eigenvalue2]]), Matrix([[x],[y],[z]])),[x,y,z]);
solve(MatrixMatrixMultiply(Matrix([[a1,a2,a3],[a4,a5,a6],[a7,a8,a9]])-Matrix([[eigenvalue3,0,0],[0,eigenvalue3,0],[0,0,eigenvalue3]]), Matrix([[x],[y],[z]])),[x,y,z]);

 

got error when using solve

> solve(MatrixMatrixMultiply(Matrix([[a1, a2, a3], [a4, a5, a6], [a7, a8, a9]])-Matrix([[eigenvalue1, 0, 0], [0, eigenvalue1, 0], [0, 0, eigenvalue1]]), Matrix([[x], [y], [z]])), [x, y, z]);
Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({set, list})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received Matrix(3, 1, {(1, 1) = ((2/3)*a1-(1/6)*(36*a7*a1*a3+108*a7*a2*a6+108*a8*a4*a3+36*a8*a6*a5-72*a7*a3*a5-72*a8*a6*a1-72*a9*a4*a2+48*a9*a5*a1-12*a9*a1^2-12*a5*a1^2+8*a1^3-12*a9^2*a1-12*a5^2*a1-12*a9^2*a5-12*a9*a5^2+36*a8*a6*a9+36*a7*a3*a9+36*a4*a2*a1+36*a4*a2*a5+8*a9^3+8*a5^3+12*(54*a7*a2^2*a6*a4*a1+114*a8*a6*a9*a1*a4*a2+6*a8*a6*a9*a1*a7*a3+54*a8*a4*a3^2*a7*a9-60*a9*a1^2*a8*a6*a5-60*a8*a6*a7*a3*a5^2-60*a8*a6*a4*a2*a9^2-24*a9*a1*a4^2*a2^2+6*...

Hi Everybody,

I installed the Maple Toolbox for matlab and tried to run my old code.  For some reason, maple('restart') will cause Matlab to lock up.  Any ideas?

Windows 7 64-bit.  Matlab 2012b 32-bit, Maple 18 32-bit

Hi Mapleprimers,

I'm using CodeGeneration to convert a procedure I obtained with unapply() into a Matlab function.  I'm having problems getting the outputting function to run correctly in Matlab.  I'm going to dynamically generating equations, so directly editing the Matlab code won't work here.  I'm having problems getting any output in Matlab.  Here is the code I'm working on:  Series_addGear_codegen.mw

Ideally I would like output in a matrix.  I've tried putting the unapplied procedure in another procedure, but the CodeGeneration doesn't work.

This is the maple output from the function:

unapp(1,2,3,4,5);
{BAT_A = -2.267032891, BAT_V = 271, EM2_A = .4615464218, EM2_P = 125.0790803, EM2_T = -1, EM2_V = 271, EM2_W = 2, GBa_T = 12, GBa_W = 5/3, GBb_T = -4, GBb_W = 5, GEN_A = 1.805486469, GEN_P = 489.2868330, GEN_T = -12, GEN_V = 271, GEN_W = 5/3, ICE_mdot_g = 20}

Since I'll know the order of variables, I want the Matlab function to output:

[-2.267032891,  271,  .4615464218,  125.0790803,  -1, ...]

This is the output after putting the Matlab function in Matlab:

>> unapp(1, 1, 1, 1, 1)
Undefined function or variable 'BAT_A'.

Error in unapp (line 39)
unappreturn = unique([BAT_A == -t35 / 0.271e3 - t73 / 0.271e3 BAT_V == 271 EM2_A == t35 /
0.271e3 EM2_P == t35 EM2_T == -FD_T EM2_V == 271 EM2_W == FD_W GBa_T == t44 GBa_W == t41 GBb_T
== -ICE_T GB

This is the Matlab code that is generated by Maple 18:

MCode:=CodeGeneration[Matlab](unapp, declare = [FD_T::float, FD_W::float, GB_R::float, ICE_T::float, ICE_W::float],defaulttype=float,optimize,defaulttype = numeric);
Warning, could not preprocess. Found `abs` or similar in the 'While'/'For' conditions.
Warning, procedure/module options ignored
function unappreturn = unapp(FD_T, FD_W, GB_R, ICE_T, ICE_W)
t2 = 0.1e1 * FD_T * FD_W;
t5 = abs(FD_W);
t7 = abs(FD_T);
t9 = t5 ^ 2;
t13 = t7 ^ 2;
t15 = t9 * t5;
t21 = t13 * t7;
t23 = t9 ^ 2;
t31 = t13 ^ 2;
t33 = 0.1483000000e3 - 0.4267000000e1 * t5 - 0.1277000000e2 * t7 + 0.3640000000e-1 * t9 - 0.1160000000e1 * t5 * t7 + 0.2580000000e0 * t13 - 0.1181000000e-3 * t15 + 0.5994000000e-3 * t9 * t7 - 0.1171000000e-3 * t5 * t13 - 0.1739000000e-2 * t21 + 0.1245000000e-6 * t23 - 0.1200000000e-5 * t15 * t7 + 0.1584000000e-5 * t9 * t13 - 0.4383000000e-6 * t5 * t21 + 0.2947000000e-5 * t31;
if (-t2 == 0.0e0)
t35 = 0.0e0;
elseif (-t2 < 0.0e0)
t35 = t33;
else
t35 = -t33;
end
t36 = ICE_T * ICE_W;
t37 = 0.1e1 * t36;
t41 = ICE_W / GB_R;
t42 = abs(t41);
t44 = ICE_T * GB_R;
t45 = abs(t44);
t47 = t42 ^ 2;
t51 = t45 ^ 2;
t53 = t47 * t42;
t59 = t51 * t45;
t61 = t47 ^ 2;
t69 = t51 ^ 2;
t71 = 0.5280000000e-11 - 0.3849000000e-13 * t42 + 0.7190000000e2 * t45 + 0.1168000000e-15 * t47 - 0.1296000000e1 * t42 * t45 - 0.2489000000e1 * t51 - 0.1451000000e-18 * t53 - 0.1326000000e-3 * t47 * t45 + 0.8141000000e-2 * t42 * t51 + 0.4539000000e-2 * t59 + 0.6325000000e-22 * t61 + 0.2091000000e-6 * t53 * t45 - 0.3455000000e-5 * t47 * t51 - 0.2499000000e-4 * t42 * t59 + 0.5321000000e-4 * t69;
if (-t37 == 0.0e0)
t73 = 0.0e0;
elseif (-t37 < 0.0e0)
t73 = t71;
else
t73 = -t71;
end
unappreturn = unique([BAT_A == -t35 / 0.271e3 - t73 / 0.271e3 BAT_V == 271 EM2_A == t35 / 0.271e3 EM2_P == t35 EM2_T == -FD_T EM2_V == 271 EM2_W == FD_W GBa_T == t44 GBa_W == t41 GBb_T == -ICE_T GBb_W == ICE_W GEN_A == t73 / 0.271e3 GEN_P == t73 GEN_T == -t44 GEN_V == 271 GEN_W == t41 ICE_mdot_g == t36]);

 

 

I am not able to simplify my equation, any help would be appreciated ! I want the V[0]^2/r[0]  term to be eliminated

restart:with(Student[VectorCalculus]): 

R1:=rho(diff(u(r,theta,z,t)*(V[0])^2/r[0],t)+ u(r,theta,z,t)*V[0](diff(u(r,theta,z,t)*V[0]/r[0],r))+v(r,theta,z,t)*V[0]/(r*r[0])*diff(u(r,theta,z,t)*V[0],theta)+w(r,theta,z,t)*V[0]*diff(u(r,theta,z,t)*V[0]/r[0],z)-(v(r,theta,z,t)*V[0])^2/(r*r[0])) +diff(p(r,theta,z,t)*rho*V[0]^2/r[0],r); simplify(R1*r[0]/V[0]^2);

rho((diff(u(r, theta, z, t), t))*V[0]^2/r[0]+u(r, theta, z, t)*V[0]((diff(u(r, theta, z, t), r))*V[0]/r[0])+v(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), theta))/(r*r[0])+w(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), z))/r[0]-v(r, theta, z, t)^2*V[0]^2/(r*r[0]))+(diff(p(r, theta, z, t), r))*rho*V[0]^2/r[0]

 

((diff(p(r, theta, z, t), r))*rho*V[0]^2+rho((w(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), z))*r+(diff(u(r, theta, z, t), t))*V[0]^2*r+u(r, theta, z, t)*V[0]((diff(u(r, theta, z, t), r))*V[0]/r[0])*r*r[0]-v(r, theta, z, t)^2*V[0]^2+v(r, theta, z, t)*V[0]^2*(diff(u(r, theta, z, t), theta)))/(r*r[0]))*r[0])/V[0]^2

(1)

 

Download 1.mw

 

 

hello evreybody i have these Error :

restart:with(plots):
M:=765 : m:=587 :I:=76.3*10^3 :Jp:=7.3*10^3 :e:=10.92: F:=0.42: omega:=0.56 :ka:=0.1:kb:=0.1:kc:=0.1: lambda1:=0.1 :lambda2:=0.1:lambda3:=0.1:
Error, illegal use of an object as a name

 

please help 
thank you !

sign is different runnning the same script in maple 12 and maple 15 in different machine, just using matrixmultiply and matrix(xxx, shape=hermitian)

assume my window 7 infected by virus, can maple prevent virus change

its accuracy?

or

is there any change between maple 12 and maple 15? 

 

i feel that i will have to make large effort in order to find reason such as reinstall maple 12.

 

window 7 maple 15

[[a = 3.720799777 10 , b = -3.720817167 10 ]], 0.3469023622
[(-0.737729376724384 + 0. I) ((-0.737729376724384100 + 0. I) a

+ (-0.738311510115612690 + 0. I) b) + (-0.590656319609631

- 0. I) ((-0.590656319609630831 + 0. I) a

+ (-0.589459378339369122 + 0. I) b) + (0.326925800179577

- 0. I) ((0.326925800179577230 + 0. I) a

+ (0.327770888454982090 + 0. I) b) = -0.736196608749071 + 0. I,

(-0.590656319609631 + 0. I) ((-0.591008582207233624 + 0. I) a

+ (-0.589459378339369010 + 0. I) b) + (0.331003458223746

+ 0. I) ((0.331003458223746439 + 0. I) a

+ (0.327770888454981812 + 0. I) b) + (-0.735625969091165

- 0. I) ((-0.735625969091165288 + 0. I) a

+ (-0.738311510115613134 + 0. I) b) = 0.327869065042947 + 0. I

]

window 8 maple 12

 


[[a = 0.2249293777, b = 1.221244758]], 0.9888653482, "************"
[(0.737729376724384100 + 0. I) ((0.737729376724384100 + 0. I) a

+ (-0.738311510115612690 + 0. I) b) + (0.590656319609631053 - 0. I)

((0.590656319609631053 + 0. I) a + (-0.589459378339369122 + 0. I) b) +

(0.326925800179576676 - 0. I) ((0.326925800179576676 + 0. I) a

+ (0.327770888454982090 + 0. I) b) = -0.736196608749071002 + 0. I,

(0.590656319609631053 + 0. I) ((0.591008582207233624 + 0. I) a

+ (-0.589459378339369010 + 0. I) b) + (-0.331003458223746605 + 0. I) ((
-0.331003458223746605 + 0. I) a + (0.327770888454981812 + 0. I) b) + (
-0.735625969091165178 - 0. I) ((-0.735625969091165178 + 0. I) a

+ (-0.738311510115613134 + 0. I) b) = 0.327869065042946218 + 0. I]
7

 

Dihedralgroup(9) acts on the set 1..9 and has order 9

g:=SmallGroup(18,1) acts on the set 1..18 and has order 18.

Question:

Is it possible to let g act on 1..9, too) and how can I do that?

Best regards

 

Kurt Ewald

Hi All. Hope all is well.

Assume that we have partitioned [0,a], into N equidistant subintervals and in each subinterval we have M sets of polynomials of arbitrary form[say bij(t)](a.e Taylor series, or Bernstein series,…)

for Example with N=4, M=3 and by Taylor series we have:

 

now we want to approximate a function, asy f(t), in this interval with following form:

 

If we have:

(Tau is a constant number)
then: How can  we find L and Z matrices using maple? Is it any way? (or other softwares?)

Regards

 

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

 

1. how to do optimization with partial differential equation as constraints in maple

2. how to do optimization with  partial differential equation as objective function in order to make output obey this model

First 232 233 234 235 236 237 238 Last Page 234 of 334