Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Hello, I have quite a complex thing to solve, but would simplify it here. I would like to solve the unknown in a matrix, how can I use the 'solve' function? For example

A:=Matrix(3,1,4)
B:=Matrix(3,1,[2,7,9])
The relation between them is A=B*y

How can I use the below function?
solve(A=B*y,y)

 

I have a programme which examine how well a particular set of data fits a theoretical function.

In fact, I faced a problem : the programme returns only one solution and I guess in an arbitrary way.

I would like to find a way to define an interval in which the programme seeks solutions .

How can I do so?

 

with (Optimization)
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve,QPSolve];


data := [[2.954488^2, 1.644900e-5], [3.132092^2,1.614900e-5], [3.307416^2, 1.594200e-5], [3.471311^2, 1.550700e-5], [3.559775^2, 1.450200e-5], [3.669332^2, 1.499400e-5], [3.825572^2, 1.476900e-5], [3.962449^2, 4.133000e-8], [4.200714^2, 1.320900e-5],
[4.434636^2, 1.433400e-5], [4.638319^2, 1.259100e-5], [4.832908^2, 1.258500e-5], [5.078484^2,
1.216200e-5], [5.315167^2, 1.164300e-5], [5.662155^2, 1.131000e-5], [5.916080^2, 1.082400e-5],
[6.208865^2, 1.054800e-5], [6.526868^2, 1.002600e-5], [6.880407^2, 1.006200e-5], [7.243618^2, 9.594000e-6], [7.607233^2,
9.288000e-6], [7.916439^2, 8.958000e-6], [8.320457^2, 8.664000e-6], [8.721812^2, 8.439000e-6], [9.007774^2, 8.325000e-6], [8.721812^2, 8.439000e-6], [9.007774^2,8.325000e-6], [9.393083^2, 7.878000e-6], [9.668506^2, 7.755000e-6], [9.988994^2,7.623000e-6], [10.40192^2, 7.367000e-6], [10.94532^2, 6.928000e-6], [11.38244^2,6.812000e-6], [11.85200^2, 6.720000e-6], [12.18811^2, 6.422000e-6], [12.67281^2, 6.403000e-6], [12.96341^2,6.514000e-6], [13.49185^2, 6.032000e-6], [13.76590^2, 6.103000e-6], [14.4072^2,6.143000e-6], [14.45476^2, 6.095000e-6], [14.76313^2, 5.758000e-6], [15.09868^2,6.965000e-6]]:

f:= x -> abs(((2*(c*exp(-b*1.5e-6)/(2*150*(c^2-((1+I)*(sqrt(3.14*x/8.5e-5)))^2)))*(2*(((1-I)*c/(2*(sqrt(3.14*x/8.5e-5))))-((0.026/150)*sqrt(8.5e-5/2e-5)))*exp(-c*0.5e-3)+((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((1-I)*c/(2*(sqrt(3.14*x/8.5e-5)))))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3))-((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((1-I)*c/(2*(sqrt(3.14*x/8.5e-5)))))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3)))+(b/(2*a*(b^2-((1+I)*(sqrt(3.14*x/9e-6)))^2)*((2*(1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-b*1.5e-6))-(2*(1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-b*1.5e-6))-((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((a/150)*sqrt(8.5e-5/9e-6)))*(1-((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3+((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))-((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((a/150)*sqrt(8.5e-5/9e-6)))*(1+((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1+((a/150)*sqrt(8.5e-5/9e-6)))*(1-((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3+((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*(1-((a/150)*sqrt(8.5e-5/9e-6)))*(1+((1-I)*b*a/(2*(sqrt(3.14*x/8.5e-5))*150))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))))/(((1-((0.026/150)*sqrt(8.5e-5/2e-5)))*exp(-((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3))*(((1-((a/150)*sqrt(8.5e-5/9e-6)))*(1+((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1+((a/150)*sqrt(8.5e-5/9e-6)))*(1-((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6)))-((1+((0.026/150)*sqrt(8.5e-5/2e-5)))*exp(((1+I)*(sqrt(3.14*x/8.5e-5)))*0.5e-3))*(((1+((a/150)*sqrt(8.5e-5/9e-6)))*(1+((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6))+((1-((a/150)*sqrt(8.5e-5/9e-6)))*(1-((0.026/150)*sqrt(8.5e-5/2e-5))/((a/150)*sqrt(8.5e-5/9e-6)))*exp(-((1+I)*(sqrt(3.14*x/9e-6)))*1.5e-6)))))))*((1+I)*(sqrt(3.14*x/2e-5)))*exp(-190e-6*((1+I)*(sqrt(3.14*x/2e-5))))):


residuals := map(p -> (f(p[1])-p[2]), data):
R:= LSSolve(residuals);

 

¿Que tipos de programas ayudan en  el desarrollo de problemas geometricos?

¿como puedo resolver problemas en maple17?  

I have a TextArea component on the worksheet. Is it possible to create on the worksheet some number of Sliders, where the number of sliders is defined by the number entered in the TextArea?

Hello, how can i solve these equations

eq[1]:=a'[1](t)*p[1](x)+b*a[1](t)*p[1](x)

eq[2]:=a'[2](t)*p[2](x)+b*a[2](t)*p[2](x)

eq[3]:=a'[3](t)*p[3](x)+b*a[3](t)*p[3](x)

eq[4]:=c[1]*a[1](t)+c[2]a[2](t)+c[3]a[3](t)-q(t)

eq[5]:=d[1]*a[1](t)+d[2]a[2](t)+d[3]a[3](t)-p(t),

where p[i](x) , c[i] , d[i] , q(t) and p(t) are known functions?

Why does the following statement not evaluate, or better yet, how can I make it do so?

 

A:=value(floor(p)) assuming p>0,p<1,p::real;

or

A:=simplify(floor(p)) assuming p>0,p<1,p::real;

or any one of a lot of different attempts along the above lines, all of which seem (to me) that they should yield

A:=0

rather than

A:=floor(p)

which is what I get.

Thanks in advance

I have theoretically 3(could eventually be more) layers with an incident wave with a wave equation for that wave.

It refracts into the 2nd layer from the first and now has a 2nd wave equation, then from the 2nd into the 3rd layer with a 3rd wave equation.

All the wave equations are of the form, Psi(z) = A_1psi_1(z) + B_1psi_2(z); this is just a general solution where psi_1&2 are linearly independant solutions that make up the general equation above and A_1 and B_1 are constant coefficients that would be A_2,B_2 and A_3,B_3 for the 2nd and 3rd layers respectively.

Transfer matrix method gives A_1,B_1 in terms of A_2,B_2(as it transfers from layer 1 to 2 they equate under boundary conditions so you can solve the simultaneous equations for results). You create a matrix of these results and multiply it with the respective matrix of the 2nd layer to 3rd layer to give you the overall transfer matrix from one side of the system to the other.

I think something to do with transfer function but not sure how to use it or set up the problem. 

Thanks in advance for any pointers.

 

Bonjour,

Je veux savoir comment augmenter la mémoire du maple sachant que j'ai un calculateur puissant (4 CPU de 2G pour chacun+2 RAM de 146 G pour chacune).

En vérité, il s'agit de résoudre un système polynomial à 7 équations et 4 variables ; voici les deux messages du Maple après l'exécution : "Kernel connection has been lost" "execution stopped:memory allocation failed.please see ?alloc for more detail."

Quelles sont les paramètres ci-dessous de kernelopts qu'il faut modifier et comment :

===========================================

> kernelopts(maxdigits);

                             38654705646

> kernelopts(wordsize);

                                  64

> kernelopts(dagtag=4);

                                FLOAT

> kernelopts(dagtag=SERIES);

                                  15

> kernelopts(cputime);

                               0.010998

> kernelopts(datalimit=64*Unit( megabyte )):
> kernelopts(datalimit=64*Unit( mebibyte ));

                                62500

> kernelopts(datalimit=10000*Unit( kibibyte ));

                                65536

> kernelopts(datalimit);

                                10000

> kernelopts(cpulimit=10*Unit( minute )):
> kernelopts(cpulimit);

                                 600

============================================
Avec mes plus vifs remerciements,

Gérard.

f(f(z,a),b) = f(z, a + b) 

i googled this axiom is diff(x(t),t) = xi(f);

then i think 

diff(x(t),t$2) = xi(f);

is it f(f(f(z,a),b),c) = f(z, a + b+c) ?

then think again

whether  f(f(f(z,a),b),c) + f(f(z,a),b) = f(z, a + b+c)  is diff(x(t),t$2)+diff(x(t),t)= xi(f);

however do not know how to construct right hand side  f(z, a + b+c), this is my guess

any books teaching this?

 

i think that if any matrix group be created from  f(f(f(z,a),b),c) + f(f(z,a),b)

that can help to convert to differential equations

 

hope that there is a solvable group which can represent solvable differential equation or differential system

 

if xi is Infinitesimal in maple,

how to find Infinitesimal from f(f(z,a),b) = f(z, a + b) ?

Is there an easy way, where I can generate a 3d cube when I have already defined a 3d polygon surface?

I would like to sweep my surface 20 cm in the z-axis, preferably without having to define the cube from it's 8 corners.

Is there a command I can use for this purpose?

got error when draw root locus

and would like to know how to set feasibility tolerance, less than 0.1 is also ok

 

with(DynamicSystems):

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[27];

sol:=dsolve({a1,b1,c1,d1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);

X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));

tim := [seq(n, n=1..27)];

N:=nops(tim):

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);

 add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)

 end proc;

ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003);

result1 := Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003]);

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

k1 := result1[2][1];

k2 := result1[2][2];

k3 := result1[2][3];

k4 := result1[2][4];

k5 := result1[2][5];

k6 := result1[2][6];

k7 := result1[2][7];

k8 := result1[2][8];

k9 := result1[2][9];

k10 := result1[2][10];

k11 := result1[2][11];

k12 := result1[2][12];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

diff_eq := [a1, b1, c1, d1];

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]);

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

ResponsePlot(sys6, Step(), parameters = params);

RootLocusPlot(sys6);

 

> sys6 := DiffEquation(diff_eq, [], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]); sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> ResponsePlot(sys6, Step(), parameters = params); RootLocusPlot(sys6);

Error, invalid input: DynamicSystems:-ResponsePlot expects value for keyword parameter parameters to be of type ({set, list})(name = complexcons), but received params

Error, (in Verify:-CommonExports) system object is not a module

 

Bonjour,

 

 

Je veux savoir comment augmenter la mémoire du maple sachant que j'ai un calculateur puissant (4 CPU de 2G pour chacun+2 RAM de 146 G pour chacune).

 

Merci d'avance,

Gérard.

Hello,

I was wondering if I can call Matlab R2012b with maple 14 on my macos 10.7.5.

When I try to do this:

> Matlab[setvar]("x", 3.14);

I get this:


Error, (in Matlab:-setvar) there was a problem finding or loading matlink.so. Refer to ?Matlab,setup for help configuring your system to work with the Matlab-link.

I read that I may have to change a script. Where are those scripts located?

Regards,

First 248 249 250 251 252 253 254 Last Page 250 of 334