ComputerUser

535 Reputation

10 Badges

12 years, 208 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Just waiting for beauty who born in 1994 And waited for her email to mavio@protonmail.com What is the difference in ownership among different universe?

MaplePrimes Activity


These are replies submitted by ComputerUser

@Markiyan Hirnyk 

same error even if using <= and >=

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]:
u11 := [7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7];
a1 := Diff(x1(t),t) >= k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) >= k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) >= k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) >= 0;
a2 := Diff(x1(t),t) <= k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b2 := Diff(y1(t),t) <= k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c2 := Diff(z1(t),t) <= k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d2 := Diff(u1(t),t) <= 0;

ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];
sol:=dsolve({a1,b1,c1,d1, a2,b2,c2,d2,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);
X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));
tim := [seq(n, n=1..27)];
N:=nops(tim):
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

@Markiyan Hirnyk 

is it only for equation has <= ? can not use = ?

Error, (in Optimization:-NLPSolve) feasibilitytolerance option is accepted for constrained problems only

result1 := Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance = 0.01);
Error, (in Optimization:-NLPSolve) feasibilitytolerance option is accepted for constrained problems only

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) = 0;
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];

@Kitonum 

i still do not know the calculation of representation after reading wiki

i googled some homormophism algorithms however difficult, 

how to do these in maple?

just expect one of application such as fourier analysis on finite group

@Kitonum 

find representation of a matrix group

homomorphism

G -> GL(V) where V is vector space

any book teach how to calculate this? so far, i find no books mention it clearly

which algorithm can do this?

 

i do not understand what is GL, how vector space input into GL?

after this, does this arrow represent  Hom(G, GL(V))?

 

 

@Preben Alsholm 

how about how to set feaibility tolerance as i can not find an example in google

got error when draw root locus

and would like to know how to set feasibility tolerance, less than 0.1 is also ok

 

with(DynamicSystems):

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[27];

sol:=dsolve({a1,b1,c1,d1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);

X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));

tim := [seq(n, n=1..27)];

N:=nops(tim):

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);

 add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)

 end proc;

ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003);

result1 := Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.001,.002,.003]);

x11 := [1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];

y11 := [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];

z11 := [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];

u11 := [5.59, 5.74, 5.49, 5.19, 5.37, 5.56, 5.46, 5.21, 5.55, 5.56, 5.61, 5.91, 5.93, 5.98, 6.28, 6.24, 6.44, 6.58, 6.75, 6.78, 6.81, 7.59, 7.73, 7.75, 7.69, 7.73, 7.79];

k1 := result1[2][1];

k2 := result1[2][2];

k3 := result1[2][3];

k4 := result1[2][4];

k5 := result1[2][5];

k6 := result1[2][6];

k7 := result1[2][7];

k8 := result1[2][8];

k9 := result1[2][9];

k10 := result1[2][10];

k11 := result1[2][11];

k12 := result1[2][12];

a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);

b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);

c1 := Diff(z1(t),t) = k8*x1(t)+ k9*y1(t)+ k10*z1(t)+k12*u1(t);

d1 := Diff(u1(t),t) = 0;

diff_eq := [a1, b1, c1, d1];

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]);

sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

ResponsePlot(sys6, Step(), parameters = params);

RootLocusPlot(sys6);

 

> sys6 := DiffEquation(diff_eq, [], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t), u1(t)], [x1(t), y1(t), z1(t), u1(t)]); sys6 := DiffEquation(diff_eq, [x1(t), y1(t), z1(t)], [x1(t), y1(t), z1(t), u1(t)]);

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

Error, (in DynamicSystems:-DiffEquation) unrecognized diff-equation type: 9

> ResponsePlot(sys6, Step(), parameters = params); RootLocusPlot(sys6);

Error, invalid input: DynamicSystems:-ResponsePlot expects value for keyword parameter parameters to be of type ({set, list})(name = complexcons), but received params

Error, (in Verify:-CommonExports) system object is not a module

@Preben Alsholm 

 

success,

thank you very much

 

 

@Preben Alsholm 

when meeting non-numeric result encountered

how to deal with this error?

> Optimization:-Minimize(ans, initialpoint = [0.1e-2, 0.2e-2, 0.3e-2, 0.1e-2, 0.2e-2, 0.3e-2, 0.1e-2, 0.2e-2, 0.3e-2]);
Error, (in Optimization:-NLPSolve) non-numeric result encountered
> Optimization:-Minimize(ans, initialpoint = [0.1e-2, 0.2e-2, 0.3e-2, 0.1e-2, 0.2e-2, 0.3e-2, 0.1e-2, 0.2e-2, 0.3e-2], method = nonlinearsimplex, evaluationlimit = 1000);
Error, (in Optimization:-NLPSolve) non-numeric result encountered

@Preben Alsholm 

Error, (in ans) unable to execute add

Error, (in Optimization:-NLPSolve) unable to execute add

in maple 12, does it need maple 17?

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]:
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t);
b1 := Diff(y1(t),t) = k4*x1(t)+ k5*y1(t)+ k6*z1(t);
c1 := Diff(z1(t),t) = k7*x1(t)+ k8*y1(t)+ k9*z1(t);
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1];
sol:=dsolve({a1,b1,c1,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9]);
tim := [seq(n, n=1..27)];
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9)
sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003);
Optimization:-Minimize(ans,initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003]);

@Carl Love 

 

https://skydrive.live.com/redir?resid=E0ED7271C68BE47C%21443

 

@Carl Love 

After tried your method, it succeed, you are really a Maple expert of expert

Then, i try my own idea
1.
Error [Length of output exceeds limit of 1000000] when i try my own method with subs after permutate, how to increase this limit?

> with(combinat); list6 := permute([seq(k, k = 1 .. 512)], 2);
[Length of output exceeds limit of 1000000]

list7 := Matrix(nops(list6), 1);
for n from 1 to nops(list6) do
temp1 := list6[n];
for k from 1 to nops(list1a)*nops(list3) do
temp1 := subs(k=list5[k],temp1);
od;
list7[count] := temp1;
count := count + 1;
od;

2.
Only 3*3 matrix already got so much limitation, i feel that my computer's computation power is not enough for dimension more than 3 such as 5*5, 6*6 ....etc

what is the maximum dimension of maple that can do in my whole question?

i see that it seems i can use your method to revise previous steps

are there distribution computing for maple running on several computers?

 3.

in order to get all combination for dimension 5, it runs a very long time

i do not prove whether permutate n*n items to get all combinations, 

by observation, dimension 3 work for it.

with(combinat):
list1 := permute([a, b, a, b, a, b], 3);
list1a := subs(b=1,subs(a=0, list1));
n := 5;
list1a := permute([seq(seq(k,k=0..1),k2=1..n)], n);
list2 := permute([a, b, c, d, e, f, g, h, a, b, c, d, e, f, g, h, a, b, c, d, e, f, g, h], 3);
list3 := permute([seq(seq(k,k=11..18),k2=1..3)], 3);
Iter:= iterstructs(Permutation([seq(seq(k,k=11..(10+nops(list1a))),k2=1..n)]), size=n):
list3b := [];
while not Iter[finished] do
p:= Iter[nextvalue]();
list3b := [p, op(list3b)];
end do:

 

@Carl Love 

how to use these command in this case? any example?

@acer 

list6 := permute(convert(list5,list), 2);

 

Kernel connection has been lost

Execution stopped : Memory allocation failed

Please see ?alloc for more detail

 

what should i do for intel Core i5 3317U CPU @ 1.7HGHz 8GB memory 7.71 can used

64bits opearating system window 8

@nm I used maple 15

this example I copy a Chinese book, may be example is wrong, you can do with similar direction, not need exactly the same

@Thomas Richard 

i just set number formating to decimal places 5, and then i set back to None now.

actually there is no setting i made.

you can look at the picture i uploaded, it is a real bug in maple 12.0

@acer 

after using [] , it is correct now.

i never dare to use {} any more

First 30 31 32 33 34 35 36 Last Page 32 of 45