ComputerUser

535 Reputation

10 Badges

12 years, 207 days

Social Networks and Content at Maplesoft.com

Seldom to ask question after retired math hobby Just waiting for beauty who born in 1994 And waited for her email to mavio@protonmail.com What is the difference in ownership among different universe?

MaplePrimes Activity


These are replies submitted by ComputerUser

@Kitonum 

in fact, my application is for 

with(Groebner):
with(LinearAlgebra):
T := lexdeg([x1,x2,x3,x4,x5,x6,x7,x8],[e1,e2]);
GB := Basis([e1-x4*x2^3*x5/(x3*x1^4*x6), e2-x1*x8/(x3*x7)],T):

Error, (in LinearAlgebra:-Basis) invalid input: LinearAlgebra:-Basis expects its 1st argument, V, to be of type {Vector, {set(Vector), list(Vector)}} but received [e1-x4*x2^3*x5/(x3*x1^4*x6), e2-x1*x8/(x3*x7)]

 

however, got error, i have posted in another post, i do not understand why invalid input

@Kitonum 

in fact, there is no 

x1:=2:

x2:=3:

x3:=7:

x4:=17:

x5:=173:

x6:=709:

x7:=5347:

x8:=18713:

 

how to automatically distinct assign to x1,x2,..from only a,b,c,d?

@Kitonum 

i discover your method and sylvestorsolve (A,A,Y)

is the same

so what is the different between ker(A*X+X*A) = B and A*X+X*A = B ?

 

actually would like to solve for X in  ker(A*X+X*A) = B 

@Kitonum 

 

Y is also a known matrix, 

i make Y in terms of x because i want to find NullSpace^-1(Y) first and then subs values back into it.

 

is there a method to calculate  NullSpace^-1(Y) without making Y in terms of x

 

why Y must collinear with <1, 2, 3>, where do it come from? is it possible in general?

@Kitonum 

when i try it in another application

it return some values less than 1, 

 

never mind, i will think another method to deal with this.

may be the result matrix i derive that can not convert the original one with little difference

@Kitonum 

is it possible to solve when specfied some value, 

NewMatrix3 := Matrix([[x1,2,3], [2,3,0], [2,0,0]]):

simplify(solve({seq(seq((NewMatrix3 . EigenVector1(1..-1,i))[j]=(v[i]*EigenVector1(1..-1,i))[j], j=1..3), i=1..3)}, {seq(x||i, i=1..9)}));

@Kitonum 

why it evaluating a very long time

it has already run for 3 minutes, and it is still running

@Preben Alsholm

 

<Px, y> = <x, Py>

P is self joint

 

 is (H+H*)/2 a hermitian matrix when H is a non Hermitian matrix?

@Carl Love 

any book teach how to predict or approximate this little perturbation?

@Adri van der Meer 

the ev(4) is 3*3 matrix 

which are x, y, z?

actually the expected result of x, y, z should be in terms of variable test10

@Preben Alsholm 

use Eigenvalues, it has RootOf, why not in terms of variable test10


> New_EigenValue1 := Eigenvalues(MatrixMatrixMultiply(Transpose(NewMatrix3), NewMatrix3));
New_EigenValue1 := Vector(1, {(1) = RootOf(500000*_Z^7+(-500000*test10^2-402998250)*_Z^6+(-2503915066*test10+62844833450+221975850*test10^2)*_Z^5+(-3351902459500-15625257995*test10^2+179560038450*test10)*_Z^4+(391265707900*test10^2+82143407200000-4432825256000*test10)*_Z^3+(-1004104685500000+44430918230000*test10-3993649941000*test10^2)*_Z^2+(14116203710000*test10^2-154840724500000*test10+5938419770000000)*_Z-12500000*test10^2-13490160445000000+156500000*test10)})

then i try , got error too

> Matrix(NewMatrix3 -lambda*IdentityMatrix(7));
Error, (in Matrix) dimension parameters are required for this form of initializer

t:=1;
NewMatrix3 := Matrix([[test10, close3(t) , close3(t+1) , close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5)],
[close3(t) , close3(t+1) , close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5) ,0],
[close3(t+1) , close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5) , 0,0],
[close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5) , 0 , 0,0],
[close3(t+3) , close3(t+4) , close3(t+5) , 0 , 0 , 0,0],
[close3(t+4) , close3(t+5) , 0 , 0 , 0, 0,0],
[close3(t+5) , 0 , 0 , 0, 0, 0,0]]):
with(LinearAlgebra):
solve(Determinant(Matrix(NewMatrix3 – lambda*IdentityMatrix(7))), lambda);

 

@one_man 

how about this?

solve({3 = c1*1 + c2*2, 5 = c1*1 + c2*9, c1^2 + c2^2 = 1}, {c1,c2});

 

 

@Markiyan Hirnyk 

originally i do not want to show this system's real face, 

actually my system is

a1 := Diff(x1(s,t),s$2) = a*x1(s,t)+b*x2(s,t)+c*x3(s,t)+d*u(t);
a2 := Diff(x1(s,t),t)=x1(s,t);
b1 := Diff(x2(s,t),s$2) = e*x1(s,t)+f*x2(s,t)+g*x3(s,t)+h*u(t);
b2 := Diff(x2(s,t),t)=x2(s,t);
c1 := Diff(x3(s,t),s$2) = i*x1(s,t)+j*x2(s,t)+k*x3(s,t)+l*u(t);
c2 := Diff(x3(s,t),t)=x3(s,t);
sys := [a1, a2, b1, b2, c1, c2];
sol := pdsolve(sys);

@Carl Love 

 

plots:-spacecurve([Vector[row](1, {(1) = cos(60)*sin(t)-sin(60)*cos(t)}), Vector[row](1, {(1) = sin(60)*sin(t)+cos(60)*cos(t)}), Vector[row](1, {(1) = t})], t = 0 .. 6*Pi);

 

why blank diagram when draw this?

@Markiyan Hirnyk 

 

is it needed to change this add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)

 

 

First 29 30 31 32 33 34 35 Last Page 31 of 45