Zahrah Doughty

0 Reputation

2 Badges

14 years, 75 days

MaplePrimes Activity


These are replies submitted by Zahrah Doughty

@hirnyk 

de1 := diff(f(x),x$2) - diff(g(x),x) + g(x)   =sin(x);

/ 2 \
|d | /d \
de1 := |--- f(x)| - |-- g(x)| + g(x) = sin(x)
| 2 | \dx /
\dx /

> ics := f(0) = 2, g(0)=1,D(f)(0) = -1 , f(x) ;

ics := f(0) = 2, g(0) = 1, D(f)(0) = -1, f(x)

>
> plot1( Y1, x = 0..Pi/2 ) ;

plot1(Y1, x = 0 .. 1/2 Pi)

>
>
>
>
> de2:=diff(g(x),x)-g(x)+f(x)
> =cos(x);

/d \
de2 := |-- g(x)| - g(x) + f(x) = cos(x)
\dx /

>
> ics := f(0) = 2, g(0)=1,D(f)(0) = -1 , f(x) ;

ics := f(0) = 2, g(0) = 1, D(f)(0) = -1, f(x)

> plot2(Y2,x=0..Pi/2);

plot2(Y2, x = 0 .. 1/2 Pi)

>

@hirnyk 

de1 := diff(f(x),x$2) - diff(g(x),x) + g(x)   =sin(x);

/ 2 \
|d | /d \
de1 := |--- f(x)| - |-- g(x)| + g(x) = sin(x)
| 2 | \dx /
\dx /

> ics := f(0) = 2, g(0)=1,D(f)(0) = -1 , f(x) ;

ics := f(0) = 2, g(0) = 1, D(f)(0) = -1, f(x)

>
> plot1( Y1, x = 0..Pi/2 ) ;

plot1(Y1, x = 0 .. 1/2 Pi)

>
>
>
>
> de2:=diff(g(x),x)-g(x)+f(x)
> =cos(x);

/d \
de2 := |-- g(x)| - g(x) + f(x) = cos(x)
\dx /

>
> ics := f(0) = 2, g(0)=1,D(f)(0) = -1 , f(x) ;

ics := f(0) = 2, g(0) = 1, D(f)(0) = -1, f(x)

> plot2(Y2,x=0..Pi/2);

plot2(Y2, x = 0 .. 1/2 Pi)

>

@hirnyk 

ode1:=D(D(f))(x)-D(g)(x)+g(x)=sin(x);dsolve(ode1,g(x));
(2)
ode1 := (D )(f)(x) - D(g)(x) + g(x) = sin(x)


/ / 2 \
| |d |
g(x) = exp(x) | exp(-x) |--- f(x)| - exp(-x) sin(x) dx
| | 2 |
/ \dx /

+ exp(x) _C1

>
> ode2:=D(g)(x)-g(x)+f(x)=cos(x);dsolve(ode2,g(x));

ode2 := D(g)(x) - g(x) + f(x) = cos(x)


/
|
g(x) = exp(x) | -exp(-x) f(x) + exp(-x) cos(x) dx + exp(x) _C1
|
/

>
>
> dsolve({ode1,g(0)=1},g(x));dsolve({ode2,g(0)=1},g(x));

x
/ / 2 \
| |d |
g(x) = exp(x) | exp(-u) |--- f(u)| - exp(-u) sin(u) du + exp(x)
| | 2 |
/ \du /
0


x
/
|
g(x) = exp(x) | -exp(-u) f(u) + exp(-u) cos(u) du + exp(x)
|
/
0

@hirnyk 

ode1:=D(D(f))(x)-D(g)(x)+g(x)=sin(x);dsolve(ode1,g(x));
(2)
ode1 := (D )(f)(x) - D(g)(x) + g(x) = sin(x)


/ / 2 \
| |d |
g(x) = exp(x) | exp(-x) |--- f(x)| - exp(-x) sin(x) dx
| | 2 |
/ \dx /

+ exp(x) _C1

>
> ode2:=D(g)(x)-g(x)+f(x)=cos(x);dsolve(ode2,g(x));

ode2 := D(g)(x) - g(x) + f(x) = cos(x)


/
|
g(x) = exp(x) | -exp(-x) f(x) + exp(-x) cos(x) dx + exp(x) _C1
|
/

>
>
> dsolve({ode1,g(0)=1},g(x));dsolve({ode2,g(0)=1},g(x));

x
/ / 2 \
| |d |
g(x) = exp(x) | exp(-u) |--- f(u)| - exp(-u) sin(u) du + exp(x)
| | 2 |
/ \du /
0


x
/
|
g(x) = exp(x) | -exp(-u) f(u) + exp(-u) cos(u) du + exp(x)
|
/
0

Yeah. It's a homework. I've tried doing the question this morning. Im not sure whether it is correct or not. I have an integral in my solution. Im gonna try again later. Thanks for your help. =))

Yeah. It's a homework. I've tried doing the question this morning. Im not sure whether it is correct or not. I have an integral in my solution. Im gonna try again later. Thanks for your help. =))

Page 1 of 1