ctnaz

15 Reputation

2 Badges

11 years, 207 days

MaplePrimes Activity


These are questions asked by ctnaz

the point given as follows:

x=[3,4,5,6,7]...

y=[7.42494922444550, 3.67768248674133, 2.52235142453921, 1.95610223891559, 1.61770309810016]

 

I have plotted the point and the output is like this:

plot_output.docx

how to smooth the curve and extend the curve longer 

 

please help me.....

 

 

 

Can anyone help me to transform a system of ODE into a power series solution. The system of ODE is as follows:

diff(f(eta), eta, eta, eta)+(diff(f(eta), eta, eta))*f(eta)+1 - (diff(f(eta), eta))^2=0

f(eta)*(diff(theta(eta), eta))+(1/Pr)*diff(theta(eta), eta, eta)=0

where Pr is the prendtl no.

> restart;
> Digits := 10;
> m := 11;
> P := 100;
> alpha := 1;
> F[0] := 0;
> F[1] := epsilon;
> epsilon := 0;
> F[2] := A;
> T[0] := -T[1]/alpha-1;
> T[1] := B;
> for k from 0 to m do F[k+3] := (-(sum(F[k-r+2]*F[r]*(k-r+2)*(k-r+1), r = 0 .. k))-1+sum(F[r+1]*F[k-r+1]*(r+1)*(k-r+1), r = 0 .. k))*factorial(k)/factorial(k+3); T[k+2] := -P*(sum(F[r]*T[k-r+1]*(k-r+1), r = 0 .. k))*factorial(k)/factorial(k+2) end do;
> f := 0;
> t := 0;
>
> for k from 0 to m do f := f+F[k]*eta^k; t := t+T[k]*eta^k end do;
> print(f);
> print(t)

> with(numapprox);
> pade(f, eta, [4, 4]);

>pade(t, eta, [4, 4])

>solve({limit(pade(f, eta, [4, 4]), eta = infinity) = 0., limit(pade(t, eta, [4, 4]), eta = infinity) = 0.}, [A, B])

 

 

Page 1 of 1