matmxhu

75 Reputation

5 Badges

12 years, 40 days

MaplePrimes Activity


These are questions asked by matmxhu

Hi,

    here a problem when i solve equations.i guess solve lost a root.how can i do.


An_unexpected_solve_bug_.pdf
Download An_unexpected_solve_bug_.mw

how I can I get MAPLe to simplify this to Pi/2-beta ,

simplify(arctan(sin(beta)/cos(beta)),arctrig) assuming beta<Pi/2,beta>0;

simplify(arctan(sin(beta)/cos(beta)),symbolic) assuming beta<Pi/2,beta>0;

why i can't get Pi/2-beta

for example, a__b+b__a+a__b^2,how i can choose the first and third.

hi,

here a comlicated formula,how i simplify

thanks  a lot.

``

f := (kappa*omega^2+omega^3)*(Y+(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*(kappa*omega^2+omega^3)))^2/(2*omega)+(-kappa*omega^2+omega^3)*(X+(sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*(-kappa*omega^2+omega^3)))^2/(2*omega)+(Omega*N*cos(theta[2])*omega+Omega*N*cos(theta[1])*omega-P__X^2*kappa+P__X^2*omega+P__Y^2*kappa+P__Y^2*omega)/(2*omega)-(sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(8*omega*(-kappa*omega^2+omega^3))-(-sqrt(N)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+sqrt(N)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(8*omega*(kappa*omega^2+omega^3))

(1/2)*(kappa*omega^2+omega^3)*(Y+(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*kappa*omega^2+2*omega^3))^2/omega+(1/2)*(-kappa*omega^2+omega^3)*(X+(N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(-2*kappa*omega^2+2*omega^3))^2/omega+(1/2)*(Omega*N*cos(theta[2])*omega+Omega*N*cos(theta[1])*omega-P__X^2*kappa+P__X^2*omega+P__Y^2*kappa+P__Y^2*omega)/omega-(1/8)*(N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(omega*(-kappa*omega^2+omega^3))-(1/8)*(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)^2/(omega*(kappa*omega^2+omega^3))

(1)

``

(1/2)*(kappa*omega^2+omega^3)*(Y+(-N^(1/2)*omega^(3/2)*sin(theta[2])*cos(varphi[2])*lambda__b+N^(1/2)*omega^(3/2)*sin(theta[1])*cos(varphi[1])*lambda__a)/(2*kappa*omega^2+2*omega^3))^2/omega

(2)

``

    f is a complicated function,i want to make it more simplify,but i want to keep square style,

 let coefficients of X and Y keep one unit,and simplify terms  containd special symbol of omega

 

Download Q1119.mw

it what i wanted.

Hi,

    i meet  a partial differential equation seems not complicated

with(PDEtools):

PDE := (diff(f(x__1, x__2, p__1, p__2), x__1))*p__1/m-(diff(f(x__1, x__2, p__1, p__2), p__1))*(2*k*x__1-k*x__2)+(diff(f(x__1, x__2, p__1, p__2), x__2))*p__2/m-(diff(f(x__1, x__2, p__1, p__2), p__2))*(-k*x__1+2*k*x__2);

when i use

     pdsolve(PDE);

i get nothing,but i sure

    f=c*(p__1^2/m+p__2^2/m+4*p__1*p__2/m+6*k*x__1*x__2) 

is the one solution of the differential equation .

how i can get solutions about of the above equation.

thanks .

 

1 2 3 Page 1 of 3