wo0olf

20 Reputation

4 Badges

11 years, 14 days

MaplePrimes Activity


These are questions asked by wo0olf

hi 

 

i solved my equation as follow , i want to know a compelet describtion that which method of pde/numeric methods is using .

 

thanks 


 

 

 

 

hi

i have solved my equation as folllow :

 

pde:= diff(T(x, y), x)-1.555*10^(-7)*(diff(T(x, y), y, y))/ ...........

 

sol := pdsolve(pde, {T(0, y) = 0, (D[2](T))(x, 0) = 1325.754092, (D[2](T))(x, 0.25e-4) = 1970434.783}, numeric)

 

I wana know that maple has used which of numeric method to solve my equation ?

 

1.ForwardTime1Space[forward/backward]

2.CenteredTime1Space[forward/backward]

3.BackwardTime1Space[forward/backward]

4.ForwardTimeCenteredSpace or Euler

5.CenteredTimeCenteredSpace or CrankNicholson

6.BackwardTimeCenteredSpace or BackwardEuler

7.Box

8.LaxFriedrichs

or ... ?

 

Tahnks.

hi

 

please help me :

 

 

restart; eq := diff(T(x, y), x) = a*(diff(T(x, y), `$`(y, 2)))/u(y); u := proc (y) options operator, arrow; (-1)*1.218493440*10^11*y^2+4.244913600*10^6*y+0.33e-1 end proc; eq; ICs := (D[1](T))(x, 0) = 1000, (D[1](T))(x, 0.25e-4) = 2000, T(0, y) = 0; T_sol := pdsolve({ICs, eq}, T(x, y)); T_sol

diff(T(x, y), x) = a*(diff(diff(T(x, y), y), y))/u(y)

 

proc (y) options operator, arrow; (-1)*1.218493440*100000000000*(y^2)+4.244913600*1000000*y+0.33e-1 end proc

 

diff(T(x, y), x) = a*(diff(diff(T(x, y), y), y))/(-0.1218493440e12*y^2+4244913.600*y+0.33e-1)

 

(D[1](T))(x, 0) = 1000, (D[1](T))(x, 0.25e-4) = 2000, T(0, y) = 0

 

Error, (in PDEtools:-Library:-NormalizeBoundaryConditions) unable to isolate the functions {T(0, y), (D[1](T))(x, 0), (D[1](T))(x, 0.25e-4)} in the given boundary conditions {T(0, y) = 0, (D[1](T))(x, 0) = 1000, (D[1](T))(x, 0.25e-4) = 2000}

 

T_sol

(1)

NULL

``

BC1 = diff(T(x, 0), y)=1000

BC2 = diff(T(x, 0.000025), y)=2000

IC = T(0,y)=0

where :

u(y)=-1.218493440*10^11*y^2+4.244913600*10^6*y+0.033

Download PDE_Sol.mw

hi , how can i solve this ?

 

4180*10^3*(diff(T(x, y), x))-60.5*(diff(T(x, y), y, y)) = 0

 

whith this boundary conditions 

 

diff(T(x, 0), y) = 100, diff(T(x, 0.25e-4), y) = 1000

 

thanks.

1 2 Page 1 of 2