Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Hi , I have question about poincare's theorem which needs to change the veriable and that transform the coordinates , but when I change the variable from x to y if doesn't defined any suggestion ? Please 

I want to maximize a total profit (TP) function which is dependent on five independent variables (E,W,T, theta, tp). All these five variables can have non negative values. The TP function is given below- ( first TP is directly copied from maple worksheet and than copied again as a picture for clear viewing).

 

 TP = (p1*(Q-q)+p1*(1-theta)*(q-E)+s*E-c*Q-o-h*((1/6)*alpha*W^beta*a*p1^(-b)*tp^3/m-(1/2)*alpha*W^beta*a*p1^(-b)*tp^2+Q*tp)-(t1-tp)*h*((1/2*(-(2/3)*t1+m-(1/3)*tp))*W^beta*a*alpha*(t1-tp)*(-p1*(-1+theta))^(-b)+W*m)/m-(1/2)*h*(W+E)*(T-t1))/T-u*W

 

I am trying the maximize TP with respect to above five independent variables. I tried to solve  five equations ( representing first order partial derivative of TP with respect to each of the independent variables equated to zero) simultaneously by "solve" and "fsolve" command but both these commands fail to give any output. I have also tried three other commands in optimization package ( QPSolve, NLPSolve, Maximize) but all these three commands also doesn't give any output. I want to prove the concavity of TP function with respect to five independent variables, please guide how it can be done. ( I have computed the Hessian matrix but since five first order equations doesn't give output ( through fsolve command) so I am unable to compute Hessian at these first order optimiality condition solution.). The values of the paramters in the TP equation are -

[alpha = 50, beta = .7, c = 20, h = 4, m = .4, o = 10, p1 = 40, s = 10, u = 5, a = 15000, b = 2]

restart;
with(plots); with(DEtools);
`ε` := .1;
de1 := x[0](t)+`ε`*x[1](t);
ode2 := sin(t)-`ε`*t*sin(t);
MODEL := {ode1, ode2};
VARS := {x(t), y(t)};
DOMAIN := t = 0 .. 20;
RANGE := x = -3 .. 3, y = -3 .. 3; COLORS := [BLACK, BLUE];
IC1 := [x[0](0) = 0, x[1](0) = 0]; IC2 := [(D(x[0]))(0) = 1, (D(x[1]))(0) = 0];
DEplot(MODEL, VARS, DOMAIN, RANGE, [IC1, IC2], stepsize = .1, arrows = THIN, linecolor = COLORS);
Error, (in DEtools/DEplot/CheckInitial) the 'number' option must be specified before initial conditions

Hi, is anyone using the Geometry Expressions software together with Maple? I've found about this software on forum and installed a free demo version. It is using symbolic geometry, which I haven't been able to find this feature on other software, and can work very well with Maple, but unfortunatelly, my demo version doesn't work properly, and their oficial website http://saltire.com/ has lots of errors 404 page not found. I have requested support, but have had no answer so far. I was so happy finding this software, but now I am thinking maybe wasting my time. If you are using it, or maybe think it would be good to give it a go, please let me know if it is working for you. A particular feature which is not working for me is 'creating angles'. Thank you.

Dears I have the following statment in Matlab

r=8;             ZUM=U(1)-YU(1);            IT=0;

for r=2:10

    ZU(r)=abs(U(r)-YU(r));

    if ZU(r)> ZUM

        ZUM=ZU(r);

    else

        ZUM=ZUM;

    end

end

ZUM;

while IT < 20

    IT=IT+1

    if ZUM < (0.1)^r

    IT=20;

    else

  for r=1:Nx

  YU(r)=U(r);

  end

YU;

I need to write this statment in Maple

All the 3d plot in my maple are upside down.....the tickmarks..the numbering even the lebeling are also upside down...how do i solve it....plz help

Please I need Correction on this code particularly if I can make do without the declaration of vector in the third subroutine . The idea is to get maximum error. The code has 3 subroutine. The problem I think is in the third subroutine (Display of results).

Thank you in anticipation of positive response.

# First Declaration of the problem

restart:
Digits:=30:
interface(rtablesize=infinity):

f1:=proc(n)
    y2[n]:
end proc:
f2:=proc(n)
    -y1[n]+0.001*cos(t[n]):
end proc:
f3:=proc(n)
    y4[n]:
end proc:
f4:=proc(n)
    -y3[n]+0.001*sin(t[n]):
end proc:
F1:=proc(n)
    f2(n):
end proc:
F2:=proc(n)
    -(f1(n))-0.001*sin(t[n]):
end proc:
F3:=proc(n)
    f4(n):
end proc:
F4:=proc(n)
    -f3(n)+0.001*cos(t[n]):
end proc:


# Declaration of the Numerical methods

e1:=y1[n+2] = (7/23)*y1[n]+(16/23)*y1[n+1]+(12/23)*f1(n+2)*h+(16/23)*f1(n+1)*h-(2/23)*F1(n+2)*h^2+(2/23)*h*f1(n)+((24/3703)*y1[n]-(24/3703)*y1[n+1]+(48/18515)*f1(n+2)*h+(8/55545)*f1(n+1)*h-(116/55545)*F1(n+2)*h^2+(208/55545)*h*f1(n))*u^2+((901/2980915)*y1[n]-(901/2980915)*y1[n+1]+(7109/89427450)*f1(n+2)*h+(923/14904575)*f1(n+1)*h-(6241/89427450)*F1(n+2)*h^2+(14383/89427450)*h*f1(n))*u^4+((1979723/158376013950)*y1[n]-(1979723/158376013950)*y1[n+1]+(6364571/2375640209250)*f1(n+2)*h+(728327/215967291750)*f1(n+1)*h-(11785633/4751280418500)*F1(n+2)*h^2+(5106559/791880069750)*h*f1(n))*u^6+((6488435581/13259239887894000)*y1[n]-(6488435581/13259239887894000)*y1[n+1]+(8693517709/91794737685420000)*f1(n+2)*h+(260601208141/1789997384865690000)*f1(n+1)*h-(323357994149/3579994769731380000)*F1(n+2)*h^2+(891627999937/3579994769731380000)*h*f1(n))*u^8+((25090513463/1343541160668420000)*y1[n]-(25090513463/1343541160668420000)*y1[n+1]+(190450718149/55421072877572325000)*f1(n+2)*h+(47563947061/8210529315195900000)*f1(n+1)*h-(1475729910283/443368583020578600000)*F1(n+2)*h^2+(261738159769/27710536438786162500)*h*f1(n))*u^10+((244426606265778733/347060946154014557665200000)*y1[n]-(244426606265778733/347060946154014557665200000)*y1[n+1]+(1316372988977975777/10411828384620436729956000000)*f1(n+2)*h+(105391490263288387/473264926573656214998000000)*f1(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F1(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f1(n))*u^12:

e2:=h^2*F1(n+1) = (60/23)*y1[n]-(60/23)*y1[n+1]+(25/46)*f1(n+2)*h+(32/23)*f1(n+1)*h-(4/23)*F1(n+2)*h^2+(31/46)*h*f1(n)+((209/3703)*y1[n]-(209/3703)*y1[n+1]+(1313/222180)*f1(n+2)*h+(1304/55545)*f1(n+1)*h-(131/18515)*F1(n+2)*h^2+(6011/222180)*h*f1(n))*u^2+((77491/35770980)*y1[n]-(77491/35770980)*y1[n+1]+(574843/2146258800)*f1(n+2)*h+(113536/134141175)*f1(n+1)*h-(53461/178854900)*F1(n+2)*h^2+(2258041/2146258800)*h*f1(n))*u^4+((151508243/1900512167400)*y1[n]-(151508243/1900512167400)*y1[n+1]+(1290306599/114030730044000)*f1(n+2)*h+(18919693/647901875250)*f1(n+1)*h-(113769323/9502560837000)*F1(n+2)*h^2+(4470322013/114030730044000)*h*f1(n))*u^6+((42120775181/14464625332248000)*y1[n]-(42120775181/14464625332248000)*y1[n+1]+(332746636891/734357901483360000)*f1(n+2)*h+(302396120633/298332897477615000)*f1(n+1)*h-(369019384141/795554393273640000)*F1(n+2)*h^2+(13797329479621/9546652719283680000)*h*f1(n))*u^8+((18953368786273/177347433208231440000)*y1[n]-(18953368786273/177347433208231440000)*y1[n+1]+(2430202319484337/138330997902420523200000)*f1(n+2)*h+(310803544671199/8645687368901282700000)*f1(n+1)*h-(203453960588449/11527583158535043600000)*F1(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f1(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y1[n]-(16436168060905785763/4164731353848174691982400000)*y1[n+1]+(167160345356705269819/249883881230890481518944000000)*f1(n+2)*h+(461636091223370027/354948694930242161248500000)*f1(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F1(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f1(n))*u^12:


e3:=y2[n+2] = (7/23)*y2[n]+(16/23)*y2[n+1]+(12/23)*f2(n+2)*h+(16/23)*f2(n+1)*h-(2/23)*F2(n+2)*h^2+(2/23)*h*f2(n)+((24/3703)*y2[n]-(24/3703)*y2[n+1]+(48/18515)*f2(n+2)*h+(8/55545)*f2(n+1)*h-(116/55545)*F2(n+2)*h^2+(208/55545)*h*f2(n))*u^2+((901/2980915)*y2[n]-(901/2980915)*y2[n+1]+(7109/89427450)*f2(n+2)*h+(923/14904575)*f2(n+1)*h-(6241/89427450)*F2(n+2)*h^2+(14383/89427450)*h*f2(n))*u^4+((1979723/158376013950)*y2[n]-(1979723/158376013950)*y2[n+1]+(6364571/2375640209250)*f2(n+2)*h+(728327/215967291750)*f2(n+1)*h-(11785633/4751280418500)*F2(n+2)*h^2+(5106559/791880069750)*h*f2(n))*u^6+((6488435581/13259239887894000)*y2[n]-(6488435581/13259239887894000)*y2[n+1]+(8693517709/91794737685420000)*f2(n+2)*h+(260601208141/1789997384865690000)*f2(n+1)*h-(323357994149/3579994769731380000)*F2(n+2)*h^2+(891627999937/3579994769731380000)*h*f2(n))*u^8+((25090513463/1343541160668420000)*y2[n]-(25090513463/1343541160668420000)*y2[n+1]+(190450718149/55421072877572325000)*f2(n+2)*h+(47563947061/8210529315195900000)*f2(n+1)*h-(1475729910283/443368583020578600000)*F2(n+2)*h^2+(261738159769/27710536438786162500)*h*f2(n))*u^10+((244426606265778733/347060946154014557665200000)*y2[n]-(244426606265778733/347060946154014557665200000)*y2[n+1]+(1316372988977975777/10411828384620436729956000000)*f2(n+2)*h+(105391490263288387/473264926573656214998000000)*f2(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F2(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f2(n))*u^12:

e4:=h^2*F2(n+1) = (60/23)*y2[n]-(60/23)*y2[n+1]+(25/46)*f2(n+2)*h+(32/23)*f2(n+1)*h-(4/23)*F2(n+2)*h^2+(31/46)*h*f2(n)+((209/3703)*y2[n]-(209/3703)*y2[n+1]+(1313/222180)*f2(n+2)*h+(1304/55545)*f2(n+1)*h-(131/18515)*F2(n+2)*h^2+(6011/222180)*h*f2(n))*u^2+((77491/35770980)*y2[n]-(77491/35770980)*y2[n+1]+(574843/2146258800)*f2(n+2)*h+(113536/134141175)*f2(n+1)*h-(53461/178854900)*F2(n+2)*h^2+(2258041/2146258800)*h*f2(n))*u^4+((151508243/1900512167400)*y2[n]-(151508243/1900512167400)*y2[n+1]+(1290306599/114030730044000)*f2(n+2)*h+(18919693/647901875250)*f2(n+1)*h-(113769323/9502560837000)*F2(n+2)*h^2+(4470322013/114030730044000)*h*f2(n))*u^6+((42120775181/14464625332248000)*y2[n]-(42120775181/14464625332248000)*y2[n+1]+(332746636891/734357901483360000)*f2(n+2)*h+(302396120633/298332897477615000)*f2(n+1)*h-(369019384141/795554393273640000)*F2(n+2)*h^2+(13797329479621/9546652719283680000)*h*f2(n))*u^8+((18953368786273/177347433208231440000)*y2[n]-(18953368786273/177347433208231440000)*y2[n+1]+(2430202319484337/138330997902420523200000)*f2(n+2)*h+(310803544671199/8645687368901282700000)*f2(n+1)*h-(203453960588449/11527583158535043600000)*F2(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f2(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y2[n]-(16436168060905785763/4164731353848174691982400000)*y2[n+1]+(167160345356705269819/249883881230890481518944000000)*f2(n+2)*h+(461636091223370027/354948694930242161248500000)*f2(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F2(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f2(n))*u^12:

e5:=y3[n+2] = (7/23)*y3[n]+(16/23)*y3[n+1]+(12/23)*f3(n+2)*h+(16/23)*f3(n+1)*h-(2/23)*F3(n+2)*h^2+(2/23)*h*f3(n)+((24/3703)*y3[n]-(24/3703)*y3[n+1]+(48/18515)*f3(n+2)*h+(8/55545)*f3(n+1)*h-(116/55545)*F3(n+2)*h^2+(208/55545)*h*f3(n))*u^2+((901/2980915)*y3[n]-(901/2980915)*y3[n+1]+(7109/89427450)*f3(n+2)*h+(923/14904575)*f3(n+1)*h-(6241/89427450)*F3(n+2)*h^2+(14383/89427450)*h*f3(n))*u^4+((1979723/158376013950)*y3[n]-(1979723/158376013950)*y3[n+1]+(6364571/2375640209250)*f3(n+2)*h+(728327/215967291750)*f3(n+1)*h-(11785633/4751280418500)*F3(n+2)*h^2+(5106559/791880069750)*h*f3(n))*u^6+((6488435581/13259239887894000)*y3[n]-(6488435581/13259239887894000)*y3[n+1]+(8693517709/91794737685420000)*f3(n+2)*h+(260601208141/1789997384865690000)*f3(n+1)*h-(323357994149/3579994769731380000)*F3(n+2)*h^2+(891627999937/3579994769731380000)*h*f3(n))*u^8+((25090513463/1343541160668420000)*y3[n]-(25090513463/1343541160668420000)*y3[n+1]+(190450718149/55421072877572325000)*f3(n+2)*h+(47563947061/8210529315195900000)*f3(n+1)*h-(1475729910283/443368583020578600000)*F3(n+2)*h^2+(261738159769/27710536438786162500)*h*f3(n))*u^10+((244426606265778733/347060946154014557665200000)*y3[n]-(244426606265778733/347060946154014557665200000)*y3[n+1]+(1316372988977975777/10411828384620436729956000000)*f3(n+2)*h+(105391490263288387/473264926573656214998000000)*f3(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F3(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f3(n))*u^12:
e6:=h^2*F3(n+1) = (60/23)*y3[n]-(60/23)*y3[n+1]+(25/46)*f3(n+2)*h+(32/23)*f3(n+1)*h-(4/23)*F3(n+2)*h^2+(31/46)*h*f3(n)+((209/3703)*y3[n]-(209/3703)*y3[n+1]+(1313/222180)*f3(n+2)*h+(1304/55545)*f3(n+1)*h-(131/18515)*F3(n+2)*h^2+(6011/222180)*h*f3(n))*u^2+((77491/35770980)*y3[n]-(77491/35770980)*y3[n+1]+(574843/2146258800)*f3(n+2)*h+(113536/134141175)*f3(n+1)*h-(53461/178854900)*F3(n+2)*h^2+(2258041/2146258800)*h*f3(n))*u^4+((151508243/1900512167400)*y3[n]-(151508243/1900512167400)*y3[n+1]+(1290306599/114030730044000)*f3(n+2)*h+(18919693/647901875250)*f3(n+1)*h-(113769323/9502560837000)*F3(n+2)*h^2+(4470322013/114030730044000)*h*f3(n))*u^6+((42120775181/14464625332248000)*y3[n]-(42120775181/14464625332248000)*y3[n+1]+(332746636891/734357901483360000)*f3(n+2)*h+(302396120633/298332897477615000)*f3(n+1)*h-(369019384141/795554393273640000)*F3(n+2)*h^2+(13797329479621/9546652719283680000)*h*f3(n))*u^8+((18953368786273/177347433208231440000)*y3[n]-(18953368786273/177347433208231440000)*y3[n+1]+(2430202319484337/138330997902420523200000)*f3(n+2)*h+(310803544671199/8645687368901282700000)*f3(n+1)*h-(203453960588449/11527583158535043600000)*F3(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f3(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y3[n]-(16436168060905785763/4164731353848174691982400000)*y3[n+1]+(167160345356705269819/249883881230890481518944000000)*f3(n+2)*h+(461636091223370027/354948694930242161248500000)*f3(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F3(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f3(n))*u^12:

e7:=y4[n+2] = (7/23)*y4[n]+(16/23)*y4[n+1]+(12/23)*f4(n+2)*h+(16/23)*f4(n+1)*h-(2/23)*F4(n+2)*h^2+(2/23)*h*f4(n)+((24/3703)*y4[n]-(24/3703)*y4[n+1]+(48/18515)*f4(n+2)*h+(8/55545)*f4(n+1)*h-(116/55545)*F4(n+2)*h^2+(208/55545)*h*f4(n))*u^2+((901/2980915)*y4[n]-(901/2980915)*y4[n+1]+(7109/89427450)*f4(n+2)*h+(923/14904575)*f4(n+1)*h-(6241/89427450)*F4(n+2)*h^2+(14383/89427450)*h*f4(n))*u^4+((1979723/158376013950)*y4[n]-(1979723/158376013950)*y4[n+1]+(6364571/2375640209250)*f4(n+2)*h+(728327/215967291750)*f4(n+1)*h-(11785633/4751280418500)*F4(n+2)*h^2+(5106559/791880069750)*h*f4(n))*u^6+((6488435581/13259239887894000)*y4[n]-(6488435581/13259239887894000)*y4[n+1]+(8693517709/91794737685420000)*f4(n+2)*h+(260601208141/1789997384865690000)*f4(n+1)*h-(323357994149/3579994769731380000)*F4(n+2)*h^2+(891627999937/3579994769731380000)*h*f4(n))*u^8+((25090513463/1343541160668420000)*y4[n]-(25090513463/1343541160668420000)*y4[n+1]+(190450718149/55421072877572325000)*f4(n+2)*h+(47563947061/8210529315195900000)*f4(n+1)*h-(1475729910283/443368583020578600000)*F4(n+2)*h^2+(261738159769/27710536438786162500)*h*f4(n))*u^10+((244426606265778733/347060946154014557665200000)*y4[n]-(244426606265778733/347060946154014557665200000)*y4[n+1]+(1316372988977975777/10411828384620436729956000000)*f4(n+2)*h+(105391490263288387/473264926573656214998000000)*f4(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F4(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f4(n))*u^12:

e8:=h^2*F4(n+1) = (60/23)*y4[n]-(60/23)*y4[n+1]+(25/46)*f4(n+2)*h+(32/23)*f4(n+1)*h-(4/23)*F4(n+2)*h^2+(31/46)*h*f4(n)+((209/3703)*y4[n]-(209/3703)*y4[n+1]+(1313/222180)*f4(n+2)*h+(1304/55545)*f4(n+1)*h-(131/18515)*F4(n+2)*h^2+(6011/222180)*h*f4(n))*u^2+((77491/35770980)*y4[n]-(77491/35770980)*y4[n+1]+(574843/2146258800)*f4(n+2)*h+(113536/134141175)*f4(n+1)*h-(53461/178854900)*F4(n+2)*h^2+(2258041/2146258800)*h*f4(n))*u^4+((151508243/1900512167400)*y4[n]-(151508243/1900512167400)*y4[n+1]+(1290306599/114030730044000)*f4(n+2)*h+(18919693/647901875250)*f4(n+1)*h-(113769323/9502560837000)*F4(n+2)*h^2+(4470322013/114030730044000)*h*f4(n))*u^6+((42120775181/14464625332248000)*y4[n]-(42120775181/14464625332248000)*y4[n+1]+(332746636891/734357901483360000)*f4(n+2)*h+(302396120633/298332897477615000)*f4(n+1)*h-(369019384141/795554393273640000)*F4(n+2)*h^2+(13797329479621/9546652719283680000)*h*f4(n))*u^8+((18953368786273/177347433208231440000)*y4[n]-(18953368786273/177347433208231440000)*y4[n+1]+(2430202319484337/138330997902420523200000)*f4(n+2)*h+(310803544671199/8645687368901282700000)*f4(n+1)*h-(203453960588449/11527583158535043600000)*F4(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f4(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y4[n]-(16436168060905785763/4164731353848174691982400000)*y4[n+1]+(167160345356705269819/249883881230890481518944000000)*f4(n+2)*h+(461636091223370027/354948694930242161248500000)*f4(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F4(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f4(n))*u^12:

# Display of the solutions


h:=evalf(Pi/6):

omega:=1.0:
u:=omega*h:
N:=solve(h*p = 12*Pi/6, p):
n:=0:

exy1:= [seq](eval(cos(i)+0.0005*i*sin(i)), i=h..N,h):
exy2:= [seq](eval(-0.9995*sin(i)+0.0005), i=h..N,h):
exy3:= [seq](eval(sin(i)-0.0005*i*cos(i)), i=h..N,h):
exy4:= [seq](eval(0.9995*sin(i)+0.0005*i*sin(i)), i=h..N,h):

iny1:=1:
iny2:=0:
iny3:=0:
iny4:=0.9995:

err1 := Vector(N):
err2 := Vector(N):
c:=1:
inx:=0:
vars := y1[n+1],y1[n+2],y2[n+1],y2[n+2],y3[n+1],y3[n+2],y4[n+1],y4[n+2]:
for j from 0 to 2 do
    x[j]:=inx+j*h:
end do:
printf("%4s%9s%9s%9s%9s%9s%9s%10s%10s%9s%9s%9s%10s\n",
    "h","numy1","numy2","numy3","numy4",
    "exy1","exy2","exy3","exy4",
    "erry1","erry2","erry3","erry4");
    
st := time():
for k from 1 to N/2 do
    param1:=y1[n]=iny1,y2[n]=iny2,y3[n]=iny3,y4[n]=iny4:
    param2:=t[n]=x[0],t[n+1]=x[1],t[n+2]=x[2]:
    
    res:=eval(<vars>, fsolve(eval({e||(1..8)},[param1,param2]),{vars})):
    
    for i from 1 to 2 do
        printf("%5.2f%9.3f%9.3f%9.3f%9.3f %8.5f%10.5f%10.5f%10.5f %8.2g%9.3g%9.3g%8.3g\n",
        h*c,res[i],res[i+2],res[i+4],res[i+6],
        exy1[c],exy2[c],exy3[c],exy4[c],
        abs(res[i]-exy1[c]),abs(res[i+2]-exy2[c]),abs(res[i+4]-exy3[c]),abs(res[i+6]-exy4[c])):

        err1[c] := abs(evalf(res[i]-exy1)):
        err2[c] := abs(evalf(res[i+4]-exy3)):
        c:=c+1:
    end do:
    iny1:=res[2]:
    iny2:=res[4]:
    iny3:=res[6]:
    iny4:=res[8]:
    inx:=x[2]:
    for j from 0 to 2 do
        x[j]:=inx+j*h:
    end do:
end do:
v:=time() - st;
printf("Maximum error is %.13g", max(err1));
printf("Maximum error is %.13g", max(err2));

 

i got some trouble when i tried to build large matrix. in my case, notification error out of bound appear when looping stop at 9 from 24 repeatation. 

and this is my looping command:

the result of the script was:

now i feel so desperate so finish my final project because the error, please help me

Find the set of solutions of each of the linear congruence:

a) x≡3x≡3 (mod 5).

b) 2x≡52x≡5 (mod 9).

Hello I have the following small piece of code.

XMLTools[Print](MathML[Export]('sin(theta)'=0.25));

which exports sin(theta)=.25, how do I force the 0 to display.

 

Also

why does the following fail:

sol:=solve([cot(x)=2,x>=0,x<2*Pi],x,AllSolutions, Explicit);

i tried to solve a nonlinear ode with numerical method but maple can't solve it and this error occur:

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

my maple codes are attached below:

numeriacal_sol.mw

can any help me?

Hello,
I need to formulate the follow relationship in proper math symbols:

Differential in A (last days value minus today's) has a tendency to reach the Differential in B (today's)

I though this could be expressed with

AΔ -> BΔ

BUt I guess there are more elegant and mathematically correct ways to do this in Maple?

thank you!
Dave

Hi

I have the transition matrix used in Markov chain

A := Matrix([[alpha, beta, gamma], [delta, epsilon, zeta], [eta, theta, mu]])

I would like to write a system of equations that can be solved  to get a Markov chain  irreducible and aperiodic

All the entries of the transition matrix are in the interval [0,1)

 

Many tanks for any help

for example

func1 := proc(system1)

for i from 1 to 100 do

solve([system1[1], system1[2]],[x,y]);

od:

end proc:

 

func1([diff(y,t) = data[i+t+1], diff(x,t) = data[i+t+1]])

i is depend on the for loop inside a function, but woud like to pass this system into a function with i

this will cause error

how to write better for passing a system as parameter using variable inside a function?

Hi guys,

I've had only a little experience with Maple, but I decided to use it for preliminary frequecy response calculations. The funny thing is, I have already the solution in some way, but I'm too stupid to get it working. I can't see the mistake, however, it should have something to do with the H_n(f) function and the other normalized functions.

NASA has published a nice paper which explains the calculations, however, they have used MathCAD. Anyway, I don't think this should be a problem. Here is the documentation: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070016024.pdf 

The error message is for example for the H_n(f) function:

Warning, expecting only range variable f in expression H__n(f) to be plotted but found name H__n

 

Please help me.

Maple file: calculations.mw

First 135 136 137 138 139 140 141 Last Page 137 of 334