Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

i use optimization package with constraint hello >= 0

Minimize(xx=0, {hello >= 0})

but solution only return the case when hello = 0

how about hello > 0?

i would like to find all possible set of solutions using this constraint

do i need to set upper bound, such as {hello <= 7, hello >=0}

can it return solution when hello = 1.1, 1.2, ...2, 2.1, 2.2, 2.3, ....7

I am looking for a numerical solver for a parabolic PDE (up to 2nd order derivatives but no mixed ones) on the spatio-temporal domain [X x Y x T], either as an external package or as MAPLE code.  

I have coded the method of lines on the domain [X x T] and indeed also used pdsolve as a check for that case. However, pdsolve (numerical) cannot solve the PDEs on the domain [X x Y x T].  The run times and memory requirements for the latter case would of course be significantly greater.  

I am about to code up the method of lines (in MAPLE) on the domain [X x Y x T], but am wondering whether there exist external FORTRAN or C code packages that would be faster if called up in MAPLE and whose results would then be post-pocessed in MAPLE.

Does anyone have any suggestions?

MRB

 

hi--how i can solve following equation?

thanks

 

Eq.mw


Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Eq.mw .
 

Download Eq.mw

 

I've implemented the optimal taxation model proposed in this paper using Maple.

But it never stops running and get stuck in the last line for integral computation. Any idea of what's wrong with that?

This is the last line:

Here is the full code.


Please help me on this :

restart; with(PDETools), with(plots)

n := .3:

Eq1 := (1-n)*(diff(f(x, y), `$`(y, 3)))+(1+x*cot(x))*f(x, y)*(diff(f(x, y), `$`(y, 2)))-(diff(f(x, y), y))/Da+(diff(f(x, y), y))^2+n*We*(diff(f(x, y), `$`(y, 2)))*(diff(f(x, y), `$`(y, 3)))+sin(x)*(theta(x, y)+phi(x, y))/x = x*((diff(f(x, y), y))*(diff(f(x, y), y, x))+(diff(f(x, y), `$`(y, 2)))*(diff(f(x, y), x))):

Eq2 := (diff(theta(x, y), `$`(y, 2)))/Pr+Nt*(diff(theta(x, y), y))^2/Pr+Nb*(diff(phi(x, y), y))*(diff(theta(x, y), y))/Pr+(1+x*cot(x))*f(x, y)*(diff(theta(x, y), y)) = x*((diff(f(x, y), y))*(diff(theta(x, y), x))+(diff(theta(x, y), y))*(diff(f(x, y), x))):

Eq3 := Nb*(diff(phi(x, y), `$`(y, 2)))/(tau*Pr)+Nt*(diff(theta(x, y), `$`(y, 2)))/(tau*Pr)+(1+x*cot(x))*f(x, y)*(diff(phi(x, y), y)) = x*((diff(f(x, y), y))*(diff(phi(x, y), x))+(diff(phi(x, y), y))*(diff(f(x, y), x))):

ValWe := [0, 5, 10]:

bcs := {Nb*(D[2](phi))(x, 0)+Nt*(D[2](theta))(x, 0) = 0, f(0, y) = ((1/12)*y)^2*(6-8*((1/12)*y)+3*((1/12)*y)^2), f(x, 0) = 0, phi(0, y) = -.5*y, phi(x, 12) = 0, theta(0, y) = (1-(1/12)*y)^2, theta(x, 0) = 1, theta(x, 12) = 0, (D[2](f))(x, 0) = Da^(1/2)*(D[2, 2](f))(x, 0)+Da*(D[2, 2, 2](f))(x, 0), (D[2](f))(x, 12) = 0}:

pdsys := {Eq1, Eq2, Eq3}:

p1 := ans[1]:-plot(theta(x, y), x = 1, color = blue):

plots[display]({p1, p2, p3})

 

``


 

Download untitle_2_(1).mw

How to view the source code for a created .mv file in Maple?

Dears 

Hope you would be fine. I want to solve the following PDEs by numerically for v[nf]=alpha[nf]=Ec=mu[nf]=C=1 and Pr=6.2

Eq1 := diff(u(x, t), t) = v[nf]*(diff(u(x, t), x, x));

Eq2 := diff(u(x, t), t) = alpha[nf]*(diff(theta(x, t), x, x))/Pr+Ec*mu[nf]*C*(diff(u(x, t), x))^2;

ICs := u(x, 0) = 0, theta(x, 0);

BCs := u(0, t) = 1, theta(0, t) = 1, u(10, t) = 0, theta(10, t) = 0;

and find the values of (diff(u(0, t), x))/(1-phi)^2.5 for different values of phi. Thanks in advace 

With my best regards and sincerely.

Muhammad Usman

School of Mathematical Sciences 
Peking University, Beijing, China

Please can someone help me with looping involving 4 variables such as S1 S2 S3 S4 from a series

Sn+1 =f(f-a)+u+Vn+w

Vn+1 =wc+f a-An+ u  if An = Un+Vn

How to create a hyperplane which perpendicular to groebner basis

tord := plex(x, y, z);
G := Basis([hello1, hello2, hello3], tord);
ns, rv := NormalSet(G, tord);
Error, (in Groebner:-NormalSet) The case of non-zero-dimensional varieties is not handled
is this error due to version of maple?
which version do not have this error?
 

How to solve delay differential equation by method of steps in MAPLE software. 


 

restart

with(student)

``

G := S(t)*L(t)

S(t)*L(t)

(1)

m := 10

S[lambda] := sum(S[b]*lambda^b, b = 0 .. m); L[lambda] := sum(L[b]*lambda^b, b = 0 .. m); G[lambda] := subs(S(t) = S[lambda], G); G[lambda] := subs(L(t) = L[lambda], G[lambda]); G := G[lambda]; s := expand(G, lambda); ft := unapply(s, lambda); for i from 0 while i <= m do A1[i] := ((D@@i)(ft))(0)/factorial(i); print(A[i] = A1[i]) end do

A[0] = S[0]*L[0]

 

A[1] = L[0]*S[1]+L[1]*S[0]

 

A[2] = L[0]*S[2]+L[1]*S[1]+L[2]*S[0]

 

A[3] = L[0]*S[3]+L[1]*S[2]+L[2]*S[1]+L[3]*S[0]

 

A[4] = L[0]*S[4]+L[1]*S[3]+L[2]*S[2]+L[3]*S[1]+L[4]*S[0]

 

A[5] = L[0]*S[5]+L[1]*S[4]+L[2]*S[3]+L[3]*S[2]+L[4]*S[1]+L[5]*S[0]

 

A[6] = L[0]*S[6]+L[1]*S[5]+L[2]*S[4]+L[3]*S[3]+L[4]*S[2]+L[5]*S[1]+L[6]*S[0]

 

A[7] = S[5]*L[2]+S[2]*L[5]+S[1]*L[6]+S[0]*L[7]+S[4]*L[3]+S[3]*L[4]+S[6]*L[1]+S[7]*L[0]

 

A[8] = S[2]*L[6]+S[0]*L[8]+S[8]*L[0]+S[4]*L[4]+S[1]*L[7]+S[3]*L[5]+S[6]*L[2]+S[5]*L[3]+S[7]*L[1]

 

A[9] = S[6]*L[3]+S[9]*L[0]+S[4]*L[5]+S[2]*L[7]+S[3]*L[6]+S[8]*L[1]+S[0]*L[9]+S[1]*L[8]+S[7]*L[2]+S[5]*L[4]

 

A[10] = S[0]*L[10]+S[10]*L[0]+S[1]*L[9]+S[6]*L[4]+S[7]*L[3]+S[3]*L[7]+S[2]*L[8]+S[4]*L[6]+S[9]*L[1]+S[5]*L[5]+S[8]*L[2]

(2)

s[n+1] := (1-f)*alpha*(int(v__n, t = 0 .. t))-beta*c*(int(A__n, t = 0 .. t))-(`&theta;__1`+a+Pi)*(int(s__n, t = 0 .. t))

v[n+1] := `&theta;__1`*(int(s__n, t = 0 .. t))-((1-f)*alpha+f*`&theta;__2`+a+Pi)*(int(v__n, t = 0 .. t))

e[n+1] := `&beta;c`*(int(A__n, t = 0 .. t))-(delta+a+Pi)*(int(e__n, t = 0 .. t))

i[n+1] := delta*(int(e__n, t = 0 .. t))-(eta+a+Pi)*(int(i__n, t = 0 .. t))

r[n+1] := eta*(int(i__n, t = 0 .. t))+`f&theta;__2`*(int(v__n, t = 0 .. t))-(a+Pi)*(int(r__n, t = 0 .. t))

for n from 0 to 4 do  end do

``

(1-f)*alpha*v__n*t-beta*c*s__0*i__0*t-(`&theta;__1`+a+Pi)*s__n*t

(3)

"for n:=0, n=1, n=2, n=3, n=4:  `s__1, ``s__2__`, `s__3, ``s__4`,  `i__1`, `i__2, ``i__3`, `i__4`,   `r__1`, `r__2`, `r__3, ``r__4`:"

Error, unterminated for loop

"for n:=0, n=1, n=2, n=3, n=4:  `s__1, ` `s__2__`, `s__3, __3__, s__4`, `i__1__`, `i__2, ` `i__3`, `i__4`, `r__1`, `r__2`, `r__3, ` `r__4`:"

 

"and s(t)=`s__1_`+`s__2 __`+ `s__3, `+`s__4`,"

i(t) = i__1+`i__2, `+i__3+i__4, r(t) = r__1+r__2+r__3_+r__4

"but A[n]:=(1)/(n!) [((&DifferentialD;)^(n))/(&DifferentialD; lambda^(n)) ((&sum;)`s__k`lambda^(k))((&sum;)`i__k`lambda^(k)) ]() ? ()|() ? (lambda=0)"

Error, missing numerator

Typesetting:-mambiguous(Typesetting:-mrow(Typesetting:-mi("but", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("&InvisibleTimes;", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-msub(Typesetting:-mi("A", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mi("n", fontstyle = "italic", mathcolor = "#c800c8", mathvariant = "italic", placeholder = "true"), subscriptshift = "0"), Typesetting:-mo("&Assign;", accent = "false", fence = "false", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mfrac(Typesetting:-mn("1", mathvariant = "normal"), Typesetting:-mrow(Typesetting:-mi("n", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("&excl;", accent = "false", fence = "false", largeop = "false", lspace = "0.1111111em", mathvariant = "normal", movablelimits = "false", rspace = "0.1111111em", separator = "false", stretchy = "false", symmetric = "false")), bevelled = "false", denomalign = "center", linethickness = "1", numalign = "center"), Typesetting:-mo("&InvisibleTimes;", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-msup(Typesetting:-mo("&DifferentialD;", accent = "unset", fence = "unset", largeop = "unset", lspace = "0.0em", mathvariant = "normal", movablelimits = "unset", rspace = "0.0em", separator = "unset", stretchy = "unset", symmetric = "unset"), Typesetting:-mi("n", fontstyle = "italic", mathvariant = "italic"), superscriptshift = "0"), Typesetting:-mrow(Typesetting:-mo("&DifferentialD;", accent = "unset", fence = "unset", largeop = "unset", lspace = "0.0em", mathvariant = "normal", movablelimits = "unset", rspace = "0.0em", separator = "unset", stretchy = "unset", symmetric = "unset"), Typesetting:-mo("&InvisibleTimes;", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-msup(Typesetting:-mi("&lambda;", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mi("n", fontstyle = "italic", mathvariant = "italic"), superscriptshift = "0")), bevelled = "false", denomalign = "center", linethickness = "1", numalign = "center"), Typesetting:-mo("&InvisibleTimes;", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-munderover(Typesetting:-mo("&sum;", accent = "unset", fence = "unset", largeop = "true", lspace = "0.0em", mathvariant = "normal", movablelimits = "true", rspace = "0.1666667em", separator = "unset", stretchy = "true", symmetric = "unset"), Typesetting:-mrow(Typesetting:-mi("k", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("&equals;", accent = "false", fence = "false", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("0", mathvariant = "normal")), Typesetting:-mn("4", mathvariant = "normal"), accent = "false", accentunder = "false"), Typesetting:-mi("`s__k`"), Typesetting:-msup(Typesetting:-mi("&lambda;", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mi("k", fontstyle = "italic", mathvariant = "italic"), superscriptshift = "0")), mathvariant = "normal"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-munderover(Typesetting:-mo("&sum;", accent = "unset", fence = "unset", largeop = "true", lspace = "0.0em", mathvariant = "normal", movablelimits = "true", rspace = "0.1666667em", separator = "unset", stretchy = "true", symmetric = "unset"), Typesetting:-mrow(Typesetting:-mi("k", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("&equals;", accent = "false", fence = "false", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("0", mathvariant = "normal")), Typesetting:-mn("4", mathvariant = "normal"), accent = "false", accentunder = "false"), Typesetting:-mi("`i__k`"), Typesetting:-msup(Typesetting:-mi("&lambda;", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mi("k", fontstyle = "italic", mathvariant = "italic"), superscriptshift = "0")), mathvariant = "normal"), Typesetting:-mo("&InvisibleTimes;", accent = "false", fence = "false", largeop = "false", lspace = "0.0em", mathvariant = "normal", movablelimits = "false", rspace = "0.0em", separator = "false", stretchy = "false", symmetric = "false")), open = "&lsqb;", close = "&rsqb;", mathvariant = "normal"), Typesetting:-mfrac(Typesetting:-mambiguous(Typesetting:-merror("?"), Typesetting:-merror("missing numerator")), Typesetting:-mphantom(Typesetting:-mrow(Typesetting:-mi("x", fontstyle = "italic", mathvariant = "italic"), Typesetting:-mo("&equals;", accent = "unset", fence = "unset", largeop = "unset", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "unset", rspace = "0.2777778em", separator = "unset", stretchy = "unset", symmetric = "unset"), Typesetting:-mi("a", fontstyle = "italic", mathvariant = "italic")), constraints = "height-only"), bevelled = "false", denomalign = "center", linethickness = "0", numalign = "center"), Typesetting:-mo("&verbar;", accent = "unset", fence = "unset", largeop = "unset", lspace = "0.1111111em", mathvariant = "normal", movablelimits = "unset", rspace = "0.1111111em", separator = "unset", stretchy = "true", symmetric = "unset"), Typesetting:-mfrac(Typesetting:-mphantom(Typesetting:-mi("f(x)", fontstyle = "italic", mathvariant = "italic"), constraints = "height-only"), Typesetting:-mrow(Typesetting:-mi("&lambda;", fontstyle = "normal", mathvariant = "normal"), Typesetting:-mo("&equals;", accent = "false", fence = "false", largeop = "false", lspace = "0.2777778em", mathvariant = "normal", movablelimits = "false", rspace = "0.2777778em", separator = "false", stretchy = "false", symmetric = "false"), Typesetting:-mn("0", mathvariant = "normal")), bevelled = "false", denomalign = "center", linethickness = "0", numalign = "center")))

 

NULLI have tried to do the above but got the error messages. I tried changing the L in that computation above to i to enable me get the desired result but i couldn't.

> Please how can I generate the values S1,S2,S3,S4; i1,i2,i3,i4 and r1,r2,r3,r4 and finally do

S(t)=S1 + S2 + S3 + S4; i(t)= i1+i2+i3+i4 ; and r(t)=r1,r2,r3,r4  using Maple?

NULL

``

``


 

Download Adomian.Elisha2.mw

Dear All,

The following code plots the bifurcation diagram for a three-dimensional continuous dynamical system as a variable Re varies. However, the resulting plot (by pointplot command) is rather ugly, comparing with other bifurcation diagrams, see attached. Could anyone point me out how to improve its looking?

``

restart:
with(plots): with(DEtools): with(plottools):with(LinearAlgebra):
doSol:=proc( R )
             local t_start:=2500,
                   t_end:=5000,
                   b:=-3,
                   c:=3,
                   v1:=1,
                   f:=-4,
                   v2:=2.0,
                   omega:=0.1*sqrt(R),
                   epsilon:=evalf(1/R),
                   k:=0.1,
                   kH:=(c+1)/(b-1),
                   sys, evs, w, M, T, i, tt, solA, N_alpha,
                   r_center, z_center, Zshift, alpha, alpha1,
                   alpha2, del_alpha, m, Z, Rshift, RR;
             sys:=diff(u1(t),t)=v1*u1(t)-(omega+k*u2(t)^2)*u2(t)-(u1(t)^2+u2(t)^2-b*z(t)^2)*u1(t),
                  diff(u2(t),t)=(omega+k*u1(t)^2)*u1(t)+v1*u2(t)-(u1(t)^2+u2(t)^2-b*z(t)^2)*u2(t),
                  diff(z(t),t)=z(t)*(kH*v1+c*u1(t)^2+c*u2(t)^2+z(t)^2)+epsilon*z(t)*(v2+f*z(t)^4):
             solA:=dsolve({sys, u1(0)=0.6, u2(0)=0.6, z(0)=0.1},
                          {u1(t),u2(t),z(t)},
                          numeric, method=rkf45, maxfun=10^7,
                          events=[[[u1(t)=0, u2(t)>0], halt]]
                         );
             evs:=Array():
             evs(1,1..4):=Array([t,u1(t),u2(t),z(t)]);
             interface(warnlevel=0):

             for i from 2 do
                 w:=solA(t_end):
                 if   rhs(w[1])<t_end
                 then evs(i,1..4):=Array(map(rhs, w));
                      solA(eventclear);
                 else break;
                 fi
             od:

             interface(warnlevel=3):
             M:=DeleteRow(convert(evs,matrix),1):

             T:=M[..,1]:

             for i from 1 do
                 tt:=T[i]:
                 if   tt>=t_start
                 then break;
                 end if;
             end do:

             RR:=M[i..,3]: Z:=M[i..,4]:

             N_alpha:=numelems(RR):

             r_center:=add(RR[i],i=1..N_alpha)/N_alpha:
             z_center:=add(Z[i],i=1..N_alpha)/N_alpha:

             Zshift:=Z-~r_center: Rshift:=RR-~z_center:

             alpha:=(arctan~(Zshift/~Rshift)+(Pi/2)*sign~(Rshift))/~(2*Pi)+~0.5:

             return alpha;
  end proc:

i_start:=125: i_end:=250: i_delta:=0.1:

M:=[seq( [j, doSol(j)], j=i_start..i_end, i_delta)]:

S:=seq([Vector(numelems(M[i,2]),fill=M[i,1]),M[i,2]], i=1..numelems(M),1):
display(seq( pointplot(S[i],
             symbolsize=1,
             symbol=point) ,
             i=1..numelems(M)),
             axes=boxed,
             view=[i_start..i_end,0..1],
             size=[650,400],
             axesfont= ["TimesNewRoman", 16],
             labels=["Re",phi[n]],
             labelfont = ["TimesNewRoman", 16],
             labeldirections=[horizontal, vertical]);

``


 

Bifurcation_diagram.mw

Thank you.

Very kind wishes,

Wang Zhe

me-equations-1.mw

Hello everyone.
I have a problem with solving a system consisting of 5 odes with 10 boundary conditions. 
The system is solved without the boundary conditions,but once the bc's come in, maple just goes into a calculation loop that never ends.
I left it to run for a good two minutes but nothing changed.
No error nothing.it just cant seem to solve it.
7th and 8th bc's do look alike but are actually different because they have different coefficients..right?

I would really appreciate any help.thanks

Heres my code

restart

A__01 := -6.835541849*10^5*Pi

-683554.1849*Pi

(1)

A__02 := 0

0

(2)

A__03 := -1079.907024*Pi

-1079.907024*Pi

(3)

A__04 := -44089.46976*Pi

-44089.46976*Pi

(4)

A__05 := 2.638295324*10^10*Pi

0.2638295324e11*Pi

(5)

A__06 := 0

0

(6)

A__07 := 3.157131694*10^8*Pi

315713169.4*Pi

(7)

A__08 := 1.770427737*10^8*Pi

177042773.7*Pi

(8)

A__11 := 0

0

(9)

A__12 := 1.304761505*10^8*Pi

130476150.5*Pi

(10)

A__13 := 3.708191716*10^5*Pi

370819.1716*Pi

(11)

A__14 := 3.632098408*10^8*Pi

363209840.8*Pi

(12)

A__15 := 1.332096563*10^5*Pi

133209.6563*Pi

(13)

A__17 := 5.134419298*10^5*Pi

513441.9298*Pi

(14)

A__20 := 2.567209650*10^5*Pi

256720.9650*Pi

(15)

A__21 := 2.567209650*10^5*Pi

256720.9650*Pi

(16)

A__22 := -4.124879810*10^5*Pi

-412487.9810*Pi

(17)

A__23 := -39934.37232*Pi

-39934.37232*Pi

(18)

A__24 := -0.1955745297e-1*Pi

-0.1955745297e-1*Pi

(19)

A__25 := 0.5587843706e-2*Pi

0.5587843706e-2*Pi

(20)

A__26 := 0.4304557420e-1*Pi

0.4304557420e-1*Pi

(21)

A__27 := 0

0

(22)

A__28 := 4.174119248*10^8*Pi

417411924.8*Pi

(23)

A__29 := 3.215504392*10^9*Pi

3215504392.*Pi

(24)

A__31 := 6.447686284*10^7*Pi

64476862.84*Pi

(25)

A__32 := 2.609523010*10^8*Pi

260952301.0*Pi

(26)

A__33 := 0

0

(27)

A__34 := 0

0

(28)

A__35 := -0.1545526361e-2*Pi

-0.1545526361e-2*Pi

(29)

A__36 := -.2281415432*Pi

-.2281415432*Pi

(30)

I__1 := 1.506998916*10^10*Pi

0.1506998916e11*Pi

(31)

I__2 := 2.920855252*10^6*Pi

2920855.252*Pi

(32)

I__3 := 3.563472822*10^10*Pi

0.3563472822e11*Pi

(33)

I__4 := 1.233249995*10^6*Pi

1233249.995*Pi

(34)

I__5 := 8.659447618*10^9*Pi

8659447618.*Pi

(35)

I__6 := .1159229936*Pi

.1159229936*Pi

(36)

I__7 := -5.999289724*10^6*Pi

-5999289.724*Pi

(37)

I__8 := 5.413603800*10^9*Pi

5413603800.*Pi

(38)

I__9 := 1.460427626*10^6*PiNULL

1460427.626*Pi

(39)

I__10 := 0

0

(40)

I__11 := 2.920855252*10^6*Pi

2920855.252*Pi

(41)

I__12 := 4.219013140*10^6*Pi

4219013.140*Pi

(42)

I__13 := 1.233249995*10^6*Pi

1233249.995*Pi

(43)

I__14 := 9.976343380*10^6*Pi

9976343.380*Pi

(44)

I__15 := -2.271776306*10^5*Pi

-227177.6306*Pi

(45)

I__16 := -.6143918658*Pi

-.6143918658*Pi

(46)

I__17 := -9534.298223*Pi

-9534.298223*Pi

(47)

I__18 := 1.868000000*10^10*Pi

0.1868000000e11*Pi

(48)

I__19 := 6.000000000*10^7*Pi

60000000.00*Pi

(49)

I__20 := -.4556919660*Pi

-.4556919660*Pi

(50)

NULL

f1 := A__01+2*A__05*u(x)+A__26*p(x)+A__29*q(x)+A__31*s(x)-2*A__14*(diff(u(x), x, x))-A__17*(diff(s(x), x, x))-A__25*(diff(p(x), x))-A__28*(diff(q(x), x)) = 0

-683554.1849*Pi+0.5276590648e11*Pi*u(x)+0.4304557420e-1*Pi*p(x)+3215504392.*Pi*q(x)+64476862.84*Pi*s(x)-726419681.6*Pi*(diff(diff(u(x), x), x))-513441.9298*Pi*(diff(diff(s(x), x), x))-0.5587843706e-2*Pi*(diff(p(x), x))-417411924.8*Pi*(diff(q(x), x)) = 0

(51)

f2 := A__03+2*A__08*s(x)+(A__21-A__23)*(diff(q(x), x))+A__22*q(x)+A__31*u(x)+A__32*(diff(w(x), x))+(A__34-A__35)*(diff(p(x), x))+A__36*p(x)-2*A__13*(diff(s(x), x, x))-A__17*(diff(u(x), x, x)) = 0

-1079.907024*Pi+354085547.4*Pi*s(x)+296655.3373*Pi*(diff(q(x), x))-412487.9810*Pi*q(x)+64476862.84*Pi*u(x)+260952301.0*Pi*(diff(w(x), x))+0.1545526361e-2*Pi*(diff(p(x), x))-.2281415432*Pi*p(x)-741638.3432*Pi*(diff(diff(s(x), x), x))-513441.9298*Pi*(diff(diff(u(x), x), x)) = 0

(52)

f3 := 2*A__12*(diff(w(x), x, x))+A__32*(diff(s(x), x))+A__33*(diff(p(x), x, x)) = 0

260952301.0*Pi*(diff(diff(w(x), x), x))+260952301.0*Pi*(diff(s(x), x)) = 0

(53)

f4 := A__04+2*A__07*q(x)+A__22*s(x)+(A__23-A__21)*(diff(s(x), x))+A__24*p(x)+A__28*(diff(u(x), x))+A__29*u(x)-2*A__15*(diff(q(x), x, x))-A__20*(diff(w(x), x, x))-A__27*(diff(p(x), x, x)) = 0

-44089.46976*Pi+631426338.8*Pi*q(x)-412487.9810*Pi*s(x)-296655.3373*Pi*(diff(s(x), x))-0.1955745297e-1*Pi*p(x)+417411924.8*Pi*(diff(u(x), x))+3215504392.*Pi*u(x)-266419.3126*Pi*(diff(diff(q(x), x), x))-256720.9650*Pi*(diff(diff(w(x), x), x)) = 0

(54)

f5 := A__02+2*A__06*p(x)+A__24*q(x)+A__25*(diff(u(x), x))+A__26*u(x)+(A__35-A__34)*(diff(s(x), x))+A__36*s(x)-2*A__11*(diff(p(x), x, x))-A__27*(diff(q(x), x, x))-A__33*(diff(w(x), x, x)) = 0

-0.1955745297e-1*Pi*q(x)+0.5587843706e-2*Pi*(diff(u(x), x))+0.4304557420e-1*Pi*u(x)-0.1545526361e-2*Pi*(diff(s(x), x))-.2281415432*Pi*s(x) = 0

(55)

f := f1, f2, f3, f4, f5

-683554.1849*Pi+0.5276590648e11*Pi*u(x)+0.4304557420e-1*Pi*p(x)+3215504392.*Pi*q(x)+64476862.84*Pi*s(x)-726419681.6*Pi*(diff(diff(u(x), x), x))-513441.9298*Pi*(diff(diff(s(x), x), x))-0.5587843706e-2*Pi*(diff(p(x), x))-417411924.8*Pi*(diff(q(x), x)) = 0, -1079.907024*Pi+354085547.4*Pi*s(x)+296655.3373*Pi*(diff(q(x), x))-412487.9810*Pi*q(x)+64476862.84*Pi*u(x)+260952301.0*Pi*(diff(w(x), x))+0.1545526361e-2*Pi*(diff(p(x), x))-.2281415432*Pi*p(x)-741638.3432*Pi*(diff(diff(s(x), x), x))-513441.9298*Pi*(diff(diff(u(x), x), x)) = 0, 260952301.0*Pi*(diff(diff(w(x), x), x))+260952301.0*Pi*(diff(s(x), x)) = 0, -44089.46976*Pi+631426338.8*Pi*q(x)-412487.9810*Pi*s(x)-296655.3373*Pi*(diff(s(x), x))-0.1955745297e-1*Pi*p(x)+417411924.8*Pi*(diff(u(x), x))+3215504392.*Pi*u(x)-266419.3126*Pi*(diff(diff(q(x), x), x))-256720.9650*Pi*(diff(diff(w(x), x), x)) = 0, -0.1955745297e-1*Pi*q(x)+0.5587843706e-2*Pi*(diff(u(x), x))+0.4304557420e-1*Pi*u(x)-0.1545526361e-2*Pi*(diff(s(x), x))-.2281415432*Pi*s(x) = 0

(56)

b1 := u(0.5e-1) = 0

u(0.5e-1) = 0

(57)

b2 := s(0.5e-1) = 0

s(0.5e-1) = 0

(58)

b3 := w(0.5e-1) = 0

w(0.5e-1) = 0

(59)

b4 := q(0.5e-1) = 0

q(0.5e-1) = 0

(60)

b5 := p(0.5e-1) = 0

p(0.5e-1) = 0

(61)

b6 := p(.25) = 10

p(.25) = 10

(62)

b7 := I__1*(D(u))(.25)+I__2*(D(s))(.25)+I__3*u(.25)+I__4*s(.25)+I__5*q(.25)+I__6*p(.25)+I__7 = 0

0.1506998916e11*Pi*(D(u))(.25)+2920855.252*Pi*(D(s))(.25)+0.3563472822e11*Pi*u(.25)+1233249.995*Pi*s(.25)+8659447618.*Pi*q(.25)+.1159229936*Pi*p(.25)-5999289.724*Pi = 0

(63)

b8 := I__11*(D(u))(.25)+I__12*(D(s))(.25)+I__13*u(.25)+I__14*s(.25)+I__15*q(.25)+I__16*p(.25)+I__17 = 0

2920855.252*Pi*(D(u))(.25)+4219013.140*Pi*(D(s))(.25)+1233249.995*Pi*u(.25)+9976343.380*Pi*s(.25)-227177.6306*Pi*q(.25)-.6143918658*Pi*p(.25)-9534.298223*Pi = 0

(64)

b9 := I__8*s(.25)+I__8*(D(w))(.25)+I__9*(D(q))(.25)+I__10*(D(p))(.25) = 0

5413603800.*Pi*s(.25)+5413603800.*Pi*(D(w))(.25)+1460427.626*Pi*(D(q))(.25) = 0

(65)

b10 := I__18*s(0.5e-1)+I__18*(D(w))(0.5e-1)+I__19*(D(q))(0.5e-1)+I__20*(D(p))(0.5e-1) = 0

0.1868000000e11*Pi*s(0.5e-1)+0.1868000000e11*Pi*(D(w))(0.5e-1)+60000000.00*Pi*(D(q))(0.5e-1)-.4556919660*Pi*(D(p))(0.5e-1) = 0

(66)

bc := b1, b2, b3, b4, b5, b6, b7, b8, b9, b10

u(0.5e-1) = 0, s(0.5e-1) = 0, w(0.5e-1) = 0, q(0.5e-1) = 0, p(0.5e-1) = 0, p(.25) = 10, 0.1506998916e11*Pi*(D(u))(.25)+2920855.252*Pi*(D(s))(.25)+0.3563472822e11*Pi*u(.25)+1233249.995*Pi*s(.25)+8659447618.*Pi*q(.25)+.1159229936*Pi*p(.25)-5999289.724*Pi = 0, 2920855.252*Pi*(D(u))(.25)+4219013.140*Pi*(D(s))(.25)+1233249.995*Pi*u(.25)+9976343.380*Pi*s(.25)-227177.6306*Pi*q(.25)-.6143918658*Pi*p(.25)-9534.298223*Pi = 0, 5413603800.*Pi*s(.25)+5413603800.*Pi*(D(w))(.25)+1460427.626*Pi*(D(q))(.25) = 0, 0.1868000000e11*Pi*s(0.5e-1)+0.1868000000e11*Pi*(D(w))(0.5e-1)+60000000.00*Pi*(D(q))(0.5e-1)-.4556919660*Pi*(D(p))(0.5e-1) = 0

(67)

dsolve({f})

{p(x) = -(8348069854359562844158444947687051096236341151137912524314220251859518302979752075863711399491114303355727159464818873878118049666882586853655525810943213049175308691527282144198671705156405315206602082005476698250000/681384695121882013959665774575457025293276552134140462144317224809813638400658850960574519166869307475297566588656254581790292202187110433759810640316460147175047462827457254048717358546426320770069677796020553)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(34240844308626491610081019711889605294500000000000000/30208360982821581783994555050953960154213271)*_C2+(34240844308626491610081019711889605294500000000000000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(36518476837721784214832841091680291686157228031274705355784632000216560989062326960722556132883385318459531352857105163506440586634389571544838959138967158839432026560041815075949903368195511128895239120457672524000000/681384695121882013959665774575457025293276552134140462144317224809813638400658850960574519166869307475297566588656254581790292202187110433759810640316460147175047462827457254048717358546426320770069677796020553)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+52890088411386067353098208563585262678159500000/30208360982821581783994555050953960154213271+(40481724547356470692649144601937771039268490028626499664808222488691797969949419789064234167367280240928268259342281851919996962141648735601651130392215247466791700508312504011524885277423232843331946409690109670000/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(2678348281139371555723909271234184333434675500548299051769808252786097247836288900815739032022684126717657250786035442663482053931191700379311865059006620147884684100740588533231767968715948121334498160716584222500/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(209187707180630961271277913183528709505420646327532250194860662732467541160038654744834169410430074383172678880446267564651011059016367505660215268401694911324789622169072892833018445175333936311950288862630000/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(523535499791350128074924716767952178882367709808448685316679583994261067006997156685366259009381971777096987814006534310615919280226090261317456433508236701320831360000/7518720788474877362827383453807053170640129528155108053173359004982102061508452404831537725157338351148203869490094379903743912404883699950456145751641337726513228981)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), q(x) = (1742285929005218423983758259465108110633000/30208360982821581783994555050953960154213271)*_C2+(1742285929005218423983758259465108110633000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(24206810370440812994341329984370692199769333343936689758159855600642916795576585161376507481230407779242291861604745803611530996408979752049543310866592216091705608358463839395584654998551248659301268728150912533279/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(124968326820648119281015987587725426628193959737517840884316853932228462259290285201046562415043778496036693673780211984235049358581759191587305332131726120242250656054556262943017652958002462305110255214996110729/2271282317072940046532219248584856750977588507113801540481057416032712128002196169868581730556231024917658555295520848605967640673957034779199368801054867157250158209424857513495724528488087735900232259320068510000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+21516060937433367122316207062443146255651/3776045122852697722999319381369245019276658875+(191005515365978257870187163339514433229830365340711845404191506804283296607590044727718242405582382042819357644872248888430550154160980301404906624147647714756807705903659887076891291698496504949900048368434661/56782057926823501163305481214621418774439712677845038512026435400817803200054904246714543263905775622941463882388021215149191016848925869479984220026371678931253955235621437837393113212202193397505806483001712750000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1693719726846501435956880959958841300518575631880855453523190967886058375769593466584009439325998040997488794796616687594433609260398944787147156536459782237453137127884812012247244137311677923031947635768046508621/22712823170729400465322192485848567509775885071138015404810574160327121280021961698685817305562310249176585552955208486059676406739570347791993688010548671572501582094248575134957245284880877359002322593200685100000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(17940925996936806583951247887267381554949866439134810717209797986703498652902681107272818322144571510641767514862964693335388659231282181718830929343597164133246230045998753678136207621829810228869368554197507/5678205792682350116330548121462141877443971267784503851202643540081780320005490424671454326390577562294146388238802121514919101684892586947998422002637167893125395523562143783739311321220219339750580648300171275000000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(567908464939172961231355489036541402733737796850300111306273961529395913970149222452779196019005114242503159152996473899945144440561390253454895636664836039930583/1879680197118719340706845863451763292660032382038777013293339751245525515377113101207884431289334587787050967372523594975935978101220924987614036437910334431628307245250000)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), s(x) = -(3918813159698777715502166923069721158205512571/302083609828215817839945550509539601542132710000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(174620439239526835857404560179819737000000/30208360982821581783994555050953960154213271)*_C2-(174620439239526835857404560179819737000000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1714034799793319944095413685187634877345/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+2283212101460462861926073342355455735633/1208334439312863271359782202038158406168530840+(48439812575068172788774336960670460032103/60416721965643163567989110101907920308426542000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(277641280305013695575983750655335856629533429/30208360982821581783994555050953960154213271000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(2942582787656755037270050590020725674843/7552090245705395445998638762738490038553317750000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), u(x) = (1396606031141676012295170523175575548697397202166854601195992097744510459116360160456528214680283141976748172638290955133705525806193943772871697031526477895014238932800197609019868735240810708264200248314429817053947/27255387804875280558386630983018281011731062085365618485772688992392545536026354038422980766674772299011902663546250183271611688087484417350392425612658405887001898513098290161948694341857052830802787111840822120000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(133893006950646474560943347871601514548450/30208360982821581783994555050953960154213271)*_C2-(133893006950646474560943347871601514548450/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(150210905771987315113287445716725747921352793513353432325254435815960237730402486565670340566270953708994816244770944321344720014098949574807054853803795775055176243504044545483355347907596212687529677460313078735203/272553878048752805583866309830182810117310620853656184857726889923925455360263540384229807666747722990119026635462501832716116880874844173503924256126584058870018985130982901619486943418570528308027871118408221200000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+951827418419631732876275586583649251867507/75520902457053954459986387627384900385533177500+(1845963057184294273759808752170530589094942068928956702270071698704239458298771666829595058878468747392052113718820431088429483970489703306684764204293985293969782966908841606633432317076148546679077753100868525957/4542564634145880093064438497169713501955177014227603080962114832065424256004392339737163461112462049835317110591041697211935281347914069558398737602109734314500316418849715026991449056976175471800464518640137020000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(34847750890571220206222829902351407058377341199953006575361497114702337546335619195223288387017503082911181105526586395216849660727759673783044487705413148182890926215183091560305177049808326663105999610584089860751/908512926829176018612887699433942700391035402845520616192422966413084851200878467947432692222492409967063422118208339442387056269582813911679747520421946862900063283769943005398289811395235094360092903728027404000000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(370616025485372668039212908146602025322743515823542234470990594822792066449993618545567836950078501842998473681692784903269547857346337826299216974936579616784212669927765049685708895750207394302198529444637217/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851000000000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1309734104967104168977128612980451194819550004115195374649919013159989148829122160704374955136332658860059361006314282684980503286005821583895872707371778109258609723/75187207884748773628273834538070531706401295281551080531733590049821020615084524048315377251573383511482038694900943799037439124048836999504561457516413377265132289810000000)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), w(x) = _C1+_C2*x+Sum(exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)}

(68)

dsolve({bc, f})

 

 

``


 

Download me-equations-1.mw
 

restart

A__01 := -6.835541849*10^5*Pi

-683554.1849*Pi

(1)

A__02 := 0

0

(2)

A__03 := -1079.907024*Pi

-1079.907024*Pi

(3)

A__04 := -44089.46976*Pi

-44089.46976*Pi

(4)

A__05 := 2.638295324*10^10*Pi

0.2638295324e11*Pi

(5)

A__06 := 0

0

(6)

A__07 := 3.157131694*10^8*Pi

315713169.4*Pi

(7)

A__08 := 1.770427737*10^8*Pi

177042773.7*Pi

(8)

A__11 := 0

0

(9)

A__12 := 1.304761505*10^8*Pi

130476150.5*Pi

(10)

A__13 := 3.708191716*10^5*Pi

370819.1716*Pi

(11)

A__14 := 3.632098408*10^8*Pi

363209840.8*Pi

(12)

A__15 := 1.332096563*10^5*Pi

133209.6563*Pi

(13)

A__17 := 5.134419298*10^5*Pi

513441.9298*Pi

(14)

A__20 := 2.567209650*10^5*Pi

256720.9650*Pi

(15)

A__21 := 2.567209650*10^5*Pi

256720.9650*Pi

(16)

A__22 := -4.124879810*10^5*Pi

-412487.9810*Pi

(17)

A__23 := -39934.37232*Pi

-39934.37232*Pi

(18)

A__24 := -0.1955745297e-1*Pi

-0.1955745297e-1*Pi

(19)

A__25 := 0.5587843706e-2*Pi

0.5587843706e-2*Pi

(20)

A__26 := 0.4304557420e-1*Pi

0.4304557420e-1*Pi

(21)

A__27 := 0

0

(22)

A__28 := 4.174119248*10^8*Pi

417411924.8*Pi

(23)

A__29 := 3.215504392*10^9*Pi

3215504392.*Pi

(24)

A__31 := 6.447686284*10^7*Pi

64476862.84*Pi

(25)

A__32 := 2.609523010*10^8*Pi

260952301.0*Pi

(26)

A__33 := 0

0

(27)

A__34 := 0

0

(28)

A__35 := -0.1545526361e-2*Pi

-0.1545526361e-2*Pi

(29)

A__36 := -.2281415432*Pi

-.2281415432*Pi

(30)

I__1 := 1.506998916*10^10*Pi

0.1506998916e11*Pi

(31)

I__2 := 2.920855252*10^6*Pi

2920855.252*Pi

(32)

I__3 := 3.563472822*10^10*Pi

0.3563472822e11*Pi

(33)

I__4 := 1.233249995*10^6*Pi

1233249.995*Pi

(34)

I__5 := 8.659447618*10^9*Pi

8659447618.*Pi

(35)

I__6 := .1159229936*Pi

.1159229936*Pi

(36)

I__7 := -5.999289724*10^6*Pi

-5999289.724*Pi

(37)

I__8 := 5.413603800*10^9*Pi

5413603800.*Pi

(38)

I__9 := 1.460427626*10^6*PiNULL

1460427.626*Pi

(39)

I__10 := 0

0

(40)

I__11 := 2.920855252*10^6*Pi

2920855.252*Pi

(41)

I__12 := 4.219013140*10^6*Pi

4219013.140*Pi

(42)

I__13 := 1.233249995*10^6*Pi

1233249.995*Pi

(43)

I__14 := 9.976343380*10^6*Pi

9976343.380*Pi

(44)

I__15 := -2.271776306*10^5*Pi

-227177.6306*Pi

(45)

I__16 := -.6143918658*Pi

-.6143918658*Pi

(46)

I__17 := -9534.298223*Pi

-9534.298223*Pi

(47)

I__18 := 1.868000000*10^10*Pi

0.1868000000e11*Pi

(48)

I__19 := 6.000000000*10^7*Pi

60000000.00*Pi

(49)

I__20 := -.4556919660*Pi

-.4556919660*Pi

(50)

NULL

f1 := A__01+2*A__05*u(x)+A__26*p(x)+A__29*q(x)+A__31*s(x)-2*A__14*(diff(u(x), x, x))-A__17*(diff(s(x), x, x))-A__25*(diff(p(x), x))-A__28*(diff(q(x), x)) = 0

-683554.1849*Pi+0.5276590648e11*Pi*u(x)+0.4304557420e-1*Pi*p(x)+3215504392.*Pi*q(x)+64476862.84*Pi*s(x)-726419681.6*Pi*(diff(diff(u(x), x), x))-513441.9298*Pi*(diff(diff(s(x), x), x))-0.5587843706e-2*Pi*(diff(p(x), x))-417411924.8*Pi*(diff(q(x), x)) = 0

(51)

f2 := A__03+2*A__08*s(x)+(A__21-A__23)*(diff(q(x), x))+A__22*q(x)+A__31*u(x)+A__32*(diff(w(x), x))+(A__34-A__35)*(diff(p(x), x))+A__36*p(x)-2*A__13*(diff(s(x), x, x))-A__17*(diff(u(x), x, x)) = 0

-1079.907024*Pi+354085547.4*Pi*s(x)+296655.3373*Pi*(diff(q(x), x))-412487.9810*Pi*q(x)+64476862.84*Pi*u(x)+260952301.0*Pi*(diff(w(x), x))+0.1545526361e-2*Pi*(diff(p(x), x))-.2281415432*Pi*p(x)-741638.3432*Pi*(diff(diff(s(x), x), x))-513441.9298*Pi*(diff(diff(u(x), x), x)) = 0

(52)

f3 := 2*A__12*(diff(w(x), x, x))+A__32*(diff(s(x), x))+A__33*(diff(p(x), x, x)) = 0

260952301.0*Pi*(diff(diff(w(x), x), x))+260952301.0*Pi*(diff(s(x), x)) = 0

(53)

f4 := A__04+2*A__07*q(x)+A__22*s(x)+(A__23-A__21)*(diff(s(x), x))+A__24*p(x)+A__28*(diff(u(x), x))+A__29*u(x)-2*A__15*(diff(q(x), x, x))-A__20*(diff(w(x), x, x))-A__27*(diff(p(x), x, x)) = 0

-44089.46976*Pi+631426338.8*Pi*q(x)-412487.9810*Pi*s(x)-296655.3373*Pi*(diff(s(x), x))-0.1955745297e-1*Pi*p(x)+417411924.8*Pi*(diff(u(x), x))+3215504392.*Pi*u(x)-266419.3126*Pi*(diff(diff(q(x), x), x))-256720.9650*Pi*(diff(diff(w(x), x), x)) = 0

(54)

f5 := A__02+2*A__06*p(x)+A__24*q(x)+A__25*(diff(u(x), x))+A__26*u(x)+(A__35-A__34)*(diff(s(x), x))+A__36*s(x)-2*A__11*(diff(p(x), x, x))-A__27*(diff(q(x), x, x))-A__33*(diff(w(x), x, x)) = 0

-0.1955745297e-1*Pi*q(x)+0.5587843706e-2*Pi*(diff(u(x), x))+0.4304557420e-1*Pi*u(x)-0.1545526361e-2*Pi*(diff(s(x), x))-.2281415432*Pi*s(x) = 0

(55)

f := f1, f2, f3, f4, f5

-683554.1849*Pi+0.5276590648e11*Pi*u(x)+0.4304557420e-1*Pi*p(x)+3215504392.*Pi*q(x)+64476862.84*Pi*s(x)-726419681.6*Pi*(diff(diff(u(x), x), x))-513441.9298*Pi*(diff(diff(s(x), x), x))-0.5587843706e-2*Pi*(diff(p(x), x))-417411924.8*Pi*(diff(q(x), x)) = 0, -1079.907024*Pi+354085547.4*Pi*s(x)+296655.3373*Pi*(diff(q(x), x))-412487.9810*Pi*q(x)+64476862.84*Pi*u(x)+260952301.0*Pi*(diff(w(x), x))+0.1545526361e-2*Pi*(diff(p(x), x))-.2281415432*Pi*p(x)-741638.3432*Pi*(diff(diff(s(x), x), x))-513441.9298*Pi*(diff(diff(u(x), x), x)) = 0, 260952301.0*Pi*(diff(diff(w(x), x), x))+260952301.0*Pi*(diff(s(x), x)) = 0, -44089.46976*Pi+631426338.8*Pi*q(x)-412487.9810*Pi*s(x)-296655.3373*Pi*(diff(s(x), x))-0.1955745297e-1*Pi*p(x)+417411924.8*Pi*(diff(u(x), x))+3215504392.*Pi*u(x)-266419.3126*Pi*(diff(diff(q(x), x), x))-256720.9650*Pi*(diff(diff(w(x), x), x)) = 0, -0.1955745297e-1*Pi*q(x)+0.5587843706e-2*Pi*(diff(u(x), x))+0.4304557420e-1*Pi*u(x)-0.1545526361e-2*Pi*(diff(s(x), x))-.2281415432*Pi*s(x) = 0

(56)

b1 := u(0.5e-1) = 0

u(0.5e-1) = 0

(57)

b2 := s(0.5e-1) = 0

s(0.5e-1) = 0

(58)

b3 := w(0.5e-1) = 0

w(0.5e-1) = 0

(59)

b4 := q(0.5e-1) = 0

q(0.5e-1) = 0

(60)

b5 := p(0.5e-1) = 0

p(0.5e-1) = 0

(61)

b6 := p(.25) = 10

p(.25) = 10

(62)

b7 := I__1*(D(u))(.25)+I__2*(D(s))(.25)+I__3*u(.25)+I__4*s(.25)+I__5*q(.25)+I__6*p(.25)+I__7 = 0

0.1506998916e11*Pi*(D(u))(.25)+2920855.252*Pi*(D(s))(.25)+0.3563472822e11*Pi*u(.25)+1233249.995*Pi*s(.25)+8659447618.*Pi*q(.25)+.1159229936*Pi*p(.25)-5999289.724*Pi = 0

(63)

b8 := I__11*(D(u))(.25)+I__12*(D(s))(.25)+I__13*u(.25)+I__14*s(.25)+I__15*q(.25)+I__16*p(.25)+I__17 = 0

2920855.252*Pi*(D(u))(.25)+4219013.140*Pi*(D(s))(.25)+1233249.995*Pi*u(.25)+9976343.380*Pi*s(.25)-227177.6306*Pi*q(.25)-.6143918658*Pi*p(.25)-9534.298223*Pi = 0

(64)

b9 := I__8*s(.25)+I__8*(D(w))(.25)+I__9*(D(q))(.25)+I__10*(D(p))(.25) = 0

5413603800.*Pi*s(.25)+5413603800.*Pi*(D(w))(.25)+1460427.626*Pi*(D(q))(.25) = 0

(65)

b10 := I__18*s(0.5e-1)+I__18*(D(w))(0.5e-1)+I__19*(D(q))(0.5e-1)+I__20*(D(p))(0.5e-1) = 0

0.1868000000e11*Pi*s(0.5e-1)+0.1868000000e11*Pi*(D(w))(0.5e-1)+60000000.00*Pi*(D(q))(0.5e-1)-.4556919660*Pi*(D(p))(0.5e-1) = 0

(66)

bc := b1, b2, b3, b4, b5, b6, b7, b8, b9, b10

u(0.5e-1) = 0, s(0.5e-1) = 0, w(0.5e-1) = 0, q(0.5e-1) = 0, p(0.5e-1) = 0, p(.25) = 10, 0.1506998916e11*Pi*(D(u))(.25)+2920855.252*Pi*(D(s))(.25)+0.3563472822e11*Pi*u(.25)+1233249.995*Pi*s(.25)+8659447618.*Pi*q(.25)+.1159229936*Pi*p(.25)-5999289.724*Pi = 0, 2920855.252*Pi*(D(u))(.25)+4219013.140*Pi*(D(s))(.25)+1233249.995*Pi*u(.25)+9976343.380*Pi*s(.25)-227177.6306*Pi*q(.25)-.6143918658*Pi*p(.25)-9534.298223*Pi = 0, 5413603800.*Pi*s(.25)+5413603800.*Pi*(D(w))(.25)+1460427.626*Pi*(D(q))(.25) = 0, 0.1868000000e11*Pi*s(0.5e-1)+0.1868000000e11*Pi*(D(w))(0.5e-1)+60000000.00*Pi*(D(q))(0.5e-1)-.4556919660*Pi*(D(p))(0.5e-1) = 0

(67)

dsolve({f})

{p(x) = -(8348069854359562844158444947687051096236341151137912524314220251859518302979752075863711399491114303355727159464818873878118049666882586853655525810943213049175308691527282144198671705156405315206602082005476698250000/681384695121882013959665774575457025293276552134140462144317224809813638400658850960574519166869307475297566588656254581790292202187110433759810640316460147175047462827457254048717358546426320770069677796020553)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(34240844308626491610081019711889605294500000000000000/30208360982821581783994555050953960154213271)*_C2+(34240844308626491610081019711889605294500000000000000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(36518476837721784214832841091680291686157228031274705355784632000216560989062326960722556132883385318459531352857105163506440586634389571544838959138967158839432026560041815075949903368195511128895239120457672524000000/681384695121882013959665774575457025293276552134140462144317224809813638400658850960574519166869307475297566588656254581790292202187110433759810640316460147175047462827457254048717358546426320770069677796020553)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+52890088411386067353098208563585262678159500000/30208360982821581783994555050953960154213271+(40481724547356470692649144601937771039268490028626499664808222488691797969949419789064234167367280240928268259342281851919996962141648735601651130392215247466791700508312504011524885277423232843331946409690109670000/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(2678348281139371555723909271234184333434675500548299051769808252786097247836288900815739032022684126717657250786035442663482053931191700379311865059006620147884684100740588533231767968715948121334498160716584222500/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(209187707180630961271277913183528709505420646327532250194860662732467541160038654744834169410430074383172678880446267564651011059016367505660215268401694911324789622169072892833018445175333936311950288862630000/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(523535499791350128074924716767952178882367709808448685316679583994261067006997156685366259009381971777096987814006534310615919280226090261317456433508236701320831360000/7518720788474877362827383453807053170640129528155108053173359004982102061508452404831537725157338351148203869490094379903743912404883699950456145751641337726513228981)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), q(x) = (1742285929005218423983758259465108110633000/30208360982821581783994555050953960154213271)*_C2+(1742285929005218423983758259465108110633000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(24206810370440812994341329984370692199769333343936689758159855600642916795576585161376507481230407779242291861604745803611530996408979752049543310866592216091705608358463839395584654998551248659301268728150912533279/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(124968326820648119281015987587725426628193959737517840884316853932228462259290285201046562415043778496036693673780211984235049358581759191587305332131726120242250656054556262943017652958002462305110255214996110729/2271282317072940046532219248584856750977588507113801540481057416032712128002196169868581730556231024917658555295520848605967640673957034779199368801054867157250158209424857513495724528488087735900232259320068510000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+21516060937433367122316207062443146255651/3776045122852697722999319381369245019276658875+(191005515365978257870187163339514433229830365340711845404191506804283296607590044727718242405582382042819357644872248888430550154160980301404906624147647714756807705903659887076891291698496504949900048368434661/56782057926823501163305481214621418774439712677845038512026435400817803200054904246714543263905775622941463882388021215149191016848925869479984220026371678931253955235621437837393113212202193397505806483001712750000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1693719726846501435956880959958841300518575631880855453523190967886058375769593466584009439325998040997488794796616687594433609260398944787147156536459782237453137127884812012247244137311677923031947635768046508621/22712823170729400465322192485848567509775885071138015404810574160327121280021961698685817305562310249176585552955208486059676406739570347791993688010548671572501582094248575134957245284880877359002322593200685100000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(17940925996936806583951247887267381554949866439134810717209797986703498652902681107272818322144571510641767514862964693335388659231282181718830929343597164133246230045998753678136207621829810228869368554197507/5678205792682350116330548121462141877443971267784503851202643540081780320005490424671454326390577562294146388238802121514919101684892586947998422002637167893125395523562143783739311321220219339750580648300171275000000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(567908464939172961231355489036541402733737796850300111306273961529395913970149222452779196019005114242503159152996473899945144440561390253454895636664836039930583/1879680197118719340706845863451763292660032382038777013293339751245525515377113101207884431289334587787050967372523594975935978101220924987614036437910334431628307245250000)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), s(x) = -(3918813159698777715502166923069721158205512571/302083609828215817839945550509539601542132710000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(174620439239526835857404560179819737000000/30208360982821581783994555050953960154213271)*_C2-(174620439239526835857404560179819737000000/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1714034799793319944095413685187634877345/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+2283212101460462861926073342355455735633/1208334439312863271359782202038158406168530840+(48439812575068172788774336960670460032103/60416721965643163567989110101907920308426542000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(277641280305013695575983750655335856629533429/30208360982821581783994555050953960154213271000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(2942582787656755037270050590020725674843/7552090245705395445998638762738490038553317750000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), u(x) = (1396606031141676012295170523175575548697397202166854601195992097744510459116360160456528214680283141976748172638290955133705525806193943772871697031526477895014238932800197609019868735240810708264200248314429817053947/27255387804875280558386630983018281011731062085365618485772688992392545536026354038422980766674772299011902663546250183271611688087484417350392425612658405887001898513098290161948694341857052830802787111840822120000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(133893006950646474560943347871601514548450/30208360982821581783994555050953960154213271)*_C2-(133893006950646474560943347871601514548450/30208360982821581783994555050953960154213271)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(150210905771987315113287445716725747921352793513353432325254435815960237730402486565670340566270953708994816244770944321344720014098949574807054853803795775055176243504044545483355347907596212687529677460313078735203/272553878048752805583866309830182810117310620853656184857726889923925455360263540384229807666747722990119026635462501832716116880874844173503924256126584058870018985130982901619486943418570528308027871118408221200000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+951827418419631732876275586583649251867507/75520902457053954459986387627384900385533177500+(1845963057184294273759808752170530589094942068928956702270071698704239458298771666829595058878468747392052113718820431088429483970489703306684764204293985293969782966908841606633432317076148546679077753100868525957/4542564634145880093064438497169713501955177014227603080962114832065424256004392339737163461112462049835317110591041697211935281347914069558398737602109734314500316418849715026991449056976175471800464518640137020000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(34847750890571220206222829902351407058377341199953006575361497114702337546335619195223288387017503082911181105526586395216849660727759673783044487705413148182890926215183091560305177049808326663105999610584089860751/908512926829176018612887699433942700391035402845520616192422966413084851200878467947432692222492409967063422118208339442387056269582813911679747520421946862900063283769943005398289811395235094360092903728027404000000000)*(Sum(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^5*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))+(370616025485372668039212908146602025322743515823542234470990594822792066449993618545567836950078501842998473681692784903269547857346337826299216974936579616784212669927765049685708895750207394302198529444637217/227128231707294004653221924858485675097758850711380154048105741603271212800219616986858173055623102491765855529552084860596764067395703477919936880105486715725015820942485751349572452848808773590023225932006851000000000)*(Sum((1/11770331150627020149080202360082902699372)*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6))-(1309734104967104168977128612980451194819550004115195374649919013159989148829122160704374955136332658860059361006314282684980503286005821583895872707371778109258609723/75187207884748773628273834538070531706401295281551080531733590049821020615084524048315377251573383511482038694900943799037439124048836999504561457516413377265132289810000000)*(Sum((1/11770331150627020149080202360082902699372)*(277641280305013695575983750655335856629533429*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^4+24219906287534086394387168480335230016051500*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^3-391881315969877771550216692306972115820551257100*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)^2-1714034799793319944095413685187634877345000000*RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)+30033740543582054948137150490774140417213271000000)*exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)), w(x) = _C1+_C2*x+Sum(exp(RootOf(11770331150627020149080202360082902699372*_Z^6-277641280305013695575983750655335856629533429*_Z^4-24219906287534086394387168480335230016051500*_Z^3+391881315969877771550216692306972115820551257100*_Z^2+1714034799793319944095413685187634877345000000*_Z-30033740543582054948137150490774140417213271000000, index = _a)*x)*_C[_a], _a = 1 .. 6)}

(68)

dsolve({bc, f})

 

 

``


 

Download me-equations-1.mw

 

 

h

First 136 137 138 139 140 141 142 Last Page 138 of 334