Hapseeker

20 Reputation

4 Badges

10 years, 282 days

MaplePrimes Activity


These are questions asked by Hapseeker

Hi all

If I have an expression:

B := int(A(x), x = -infinity .. infinity)

How can I use a statement to extract A(x) when A(x) is quite complecated during calculation. thanks

Hi all

How can I realize the following code in maple:

 EquCon := K[4]*(diff(W(x), x, x, x, x))-omega^2*W(x)

EquConFour := subs((1/2)*(int(W(kappa)*exp^(-J*kappa*x), kappa = -infinity .. infinity))/Pi, EquControl)

 

Thanks~

 

Hi all!

as shown below, how can get a result without 'R':

p_com(z,t):=Re(exp(I*omega*t-I*k*(lambda[r]+I*lambda[i])*z)) assuming omega::real,t::real,k::real,lambda[r]::real,lambda[i]::real,z::real

Thanks very much!

 

Hi, all

I use INT to calculate multiple integration as below. It runs more than 20 hours without results. I wander is there any problem in my codes.

restart;
A := sin(k*Pi*(x-h*cos(theta))/a)*sin(l*Pi*(y-h*sin(theta))/b)*sin(k[0]*h)*sin(k*Pi*x/a)*sin(l*Pi*y/b);

W := evalf[5](int(int(int(int(A, h = 0 .. (x-a)/cos(theta)), theta = Pi+arctan((b-y)/(a-x)) .. 3*Pi*(1/2)), x = 0 .. a), y = 0 .. b, numeric))

 

Thanks

Hi all.

I try to get the real part from the complex expression. But it turns out to not be the simplest result:

A:=I*sin(k*Pi*(x-h*cos(theta))/a)*sin(l*Pi*(y-h*sin(theta))/b)*exp(-I*k[0]*h)*sin(k*Pi*x/a)*sin(l*Pi*y/b)

convert(exp(-I*k[0]*h), sin);

simplify(Re(A));

Maple results in:

Re(sin(k*Pi*(-x+h*cos(theta))/a)*sin(l*Pi*(-y+h*sin(theta))/b)*exp(-I*k[0]*h)*sin(k*Pi*x/a)*sin(l*Pi*y/b))

while the simplified result should be:

sin(k*Pi*(x-h*cos(theta))/a)*sin(l*Pi*(y-h*sin(theta))/b)*sin(k*Pi*x/a)*sin(l*Pi*y/b)*sin(k[0]*h)

 

I wander how to get the simplifyed result in maple. Thanks

1 2 Page 1 of 2