Hapseeker

20 Reputation

4 Badges

10 years, 282 days

MaplePrimes Activity


These are replies submitted by Hapseeker

@Carl Love Dear Carl

I did miss A! It's W(x) here. Thank you!

 

EquCon := K[4]*(diff(W(x), x, x, x, x))-omega^2*W(x)

EquConFour := subs((1/2)*(int(W(kappa)*exp^(-J*kappa*x), kappa = -infinity .. infinity))/Pi, EquCon)

 You are helpful @tomleslie, @acer, @Mac Dude,@Carl Love

Thanks~

@tomleslie Hi, as I got in my maple:

@tomleslie 

result

Thank you. Why I got the result in the attacted figure while you dirrectly got the reslut I want. 

@Axel Vogt Hi Axel. Yes, k,l,are positive integers always, and a, b, k0 are positive reals (a is not always equal b. They are the size of a rectangular plate ).  Thanks.

@Carl Love Carl, thanks again! That's true. The result of the innermost integral is quiet complicated and makes the second interal time consuming. I have used the alternate notation and assign values to the symbolic parameters:

The reason that the first two integral haven't exacuated, I guess, is that the denominator of integral limit function may be zero. I wander, in maple, can this kind of integral be solved and how. Thanks.

Codes:

restart:

A := sin(k*Pi*(x-h*cos(theta))/a)*sin(l*Pi*(y-h*sin(theta))/b)*sin(k0*h)*sin(k*Pi*x/a)*sin(l*Pi*y/b):

a := .5; b := .5; k := 2; l := 2; k0 := 1:

W1 := int(A, [h = 0 .. (x-a)/cos(theta), theta = Pi+arctan((b-y)/(a-x)) .. 3*Pi*(1/2), x = 0 .. a, y = 0 .. b], numeric):

@sazroberson  Dear sazroberson. Thanks for your answer. I haven't got your idea of 'size' option. Would you please give me an example. Thanks.

I use simplify() as a habit in maple so didn't realize that it does not make a difference. Your suggestion is really interesting.

@Carl Love  That's great! Thank you Carl~

@Carl Love  Thanks Carl! Yes, f is the same as F. But I also got a result wiht function 'Heaviside' when use Dirac:

Q[k, l] :=4*Heaviside(b-(1/2)*a)*sin((1/2)*l*Pi)*(1-Heaviside(b-2*a))*sin((1/2)*k*Pi)/(a*b) 

Is that mean, only when a/2<b<2a:

Q[k, l] := 4*sin(l*Pi/2)*sin(k*Pi/2)/(a*b)

Thank you

@Carl Love  You are right! Thank you Carl~~

@Markiyan Hirnyk Dear Markiyan, for the case with constant coefficient 'alpha[k*l]' and 'beta[k*l]', as showned bellow, equation (4) has to be solved by hand? Thank you.

restart

H := `assuming`([int(int(alpha[k*l]*beta[k*l]*(1-cos(2*k*Pi*x/a))*(1-cos(2*l*Pi*y/b))*(1-cos(2*m*Pi*x/a))*(1-cos(2*n*Pi*y/b)), y = 0 .. b, AllSolutions), x = 0 .. a, AllSolutions)], [k::posint, l::posint, m::posint, n::posint, m <= N, n <= N, a > 0, b > 0]);

(1/4)*b*alpha[k*l]*beta[k*l]*a*piecewise(l-n = 0, 1, 0)*piecewise(k-m = 0, 1, 0)+(1/2)*b*alpha[k*l]*beta[k*l]*a*piecewise(l-n = 0, 1, 0)+(1/2)*b*alpha[k*l]*beta[k*l]*a*piecewise(k-m = 0, 1, 0)+b*alpha[k*l]*beta[k*l]*a

(1)

convert(H, Heaviside)

(1/4)*b*alpha[k*l]*beta[k*l]*a*Dirac(l-n)*Dirac(k-m)+(1/2)*b*alpha[k*l]*beta[k*l]*a*Dirac(l-n)+(1/2)*b*alpha[k*l]*beta[k*l]*a*Dirac(k-m)+b*alpha[k*l]*beta[k*l]*a

(2)

L := `assuming`([int(convert(H, Heaviside), k = 0 .. N)], [k::posint, l::posint, m::posint, n::posint, m <= N, n <= N, a > 0, b > 0]);

int((1/4)*b*alpha[k*l]*beta[k*l]*a*Dirac(l-n)*Dirac(k-m)+(1/2)*b*alpha[k*l]*beta[k*l]*a*Dirac(l-n)+(1/2)*b*alpha[k*l]*beta[k*l]*a*Dirac(k-m)+b*alpha[k*l]*beta[k*l]*a, k = 0 .. N)

(3)

SOL := `assuming`([int(L, l = 0 .. N)], [k::posint, l::posint, m::posint, n::posint, m <= N, n <= N, a > 0, b > 0]);

int(int((1/4)*b*alpha[k*l]*beta[k*l]*a*Dirac(l-n)*Dirac(k-m)+(1/2)*b*alpha[k*l]*beta[k*l]*a*Dirac(l-n)+(1/2)*b*alpha[k*l]*beta[k*l]*a*Dirac(k-m)+b*alpha[k*l]*beta[k*l]*a, k = 0 .. N), l = 0 .. N)

(4)

``

 

Download SumsumCoeff.mw

@Markiyan Hirnyk Dear Markiyan, It's genius to combine the 'Dirac' and 'Heaviside' in the sum and intigral of trigonometric series. Your codes are really helpful. Thank you!

@Markiyan Hirnyk  Dear Markiyan, thank you for point out the mistake of not using 'AllSolutions'!

Page 1 of 1