danlun

15 Reputation

4 Badges

11 years, 249 days

MaplePrimes Activity


These are questions asked by danlun

I have to plot 4 vectors in one graph. I have the following structure:

plot(Vector([12, 12.5, 13, 13.5, 14, 14.5, 15]), Vector([1.622712644, 1.265443137, 1.028604736, .8605013333, .7352916667, .6386248233, .5618945274]), style = line, symbol = asterisk, color = blue)

and 

plot(Vector([12, 12.5, 13, 13.5, 14, 14.5, 15]), Vector([5.483608580, 4.289400489, 3.496793877, 2.933480578, 2.513320599, 2.188469637, 1.930230220]), style = line, symbol = asterisk, color = blue)

Could you help me to plot these two curves in one graph.

 

please help me to find a solution for this issue...

I would like to thank you in advance

Best regards,

D.L.

I gave this function:

g := -2-k[1](lambda*alpha[2]*k[2]+alpha[1](-2-2*k[2]+k[2]*lambda^2))+k[1](lambda*alpha[2]*k[2]+alpha[1](-2-2*k[2]+k[2]*lambda^2))*lambda(lambda*alpha[2]*k[2]+alpha[1](-2-2*k[2]+k[2]*lambda^2))^2

I would like to factor out or to collect:   (lambda*alpha[2]*k[2]+alpha[1](-2-2*k[2]+k[2]*lambda^2))

I use following command: collect(g, lambda*alpha[2]*k[2]+alpha[1](-2-2*k[2]+k[2]*lambda^2))

Nevertheless, I receive an error ...

Error, (in collect) cannot collect lambda*alpha[2]*k[2]+alpha[1](-2-2*k[2]+k[2]*lambda^2)

 

Could you help me to solve my issue ? 

What am I doing wrong ? Do I have to use another command for this ?

I would like to thank you in advance.

Best regards,

D.L.

 

q[1] = sqrt(x)*alpha-lambda(sqrt(x)*alpha-lambda*q[1]*q[3]-p[2])*(sqrt(x)*alpha-lambda*q[1]*q[2]-p[3])-p[1]

I am looking for q[1] solution. When I solve for q[1], maple gives me following answer:

q[1] = RootOf(-_Z+sqrt(x)*alpha-lambda(sqrt(x)*alpha-lambda*_Z*q[3]-p[2])*sqrt(x)*alpha+lambda(sqrt(x)*alpha-lambda*_Z*q[3]-p[2])*lambda*_Z*q[2]+lambda(sqrt(x)*alpha-lambda*_Z*q[3]-p[2])*p[3]-p[1])

Is it possible to obtain a classical solution for the calculations above. (can not understand the meaning of: RootOf and _Z. I need q[1] in order to solve further in my system of eqautions for  q[2],  q[3]

 

could you help me please to find a solution for this issue...
I would like to thank you in advance 
Best regards,

D.L.

((-1+lambda(lambda*k[2]*alpha[2]+alpha[1](k[2]*lambda^2-2*k[2]-2))^2)*k[1](lambda*k[2]*alpha[2]+alpha[1](k[2]*lambda^2-2*k[2]-2))+(-lambda*lambda(lambda*alpha[1]*k[1]+alpha[2](k[1]*lambda^2-2*k[1]-2))^2+lambda)*k[2](lambda*alpha[1]*k[1]+alpha[2](k[1]*lambda^2-2*k[1]-2))-k[1]*(-alpha[1]+lambda*alpha[2])*lambda(2+5*k[2])^2+lambda^5*alpha[2]*k[1]*k[2]-alpha[1]*k[1]*lambda^4*k[2]-2*lambda^3*alpha[2]*k[2]+2*alpha[1]*k[2]*lambda^2+(4*alpha[2]*(1+k[2])*k[1]+4*alpha[2]+4*k[2]*alpha[2]+2)*lambda-4*alpha[1]*(1+k[2])*k[1]-4*alpha[1]-4*alpha[1]*k[2]-2)*(-(lambda(lambda*k[2]*alpha[2]+alpha[1](k[2]*lambda^2-2*k[2]-2))-1)*(lambda(lambda*k[2]*alpha[2]+alpha[1](k[2]*lambda^2-2*k[2]-2))+1)*(-1+k[1]*lambda^2-k[1])*k[1](lambda*k[2]*alpha[2]+alpha[1](k[2]*lambda^2-2*k[2]-2))+(-lambda*lambda(lambda*alpha[1]*k[1]+alpha[2](k[1]*lambda^2-2*k[1]-2))^2+lambda)*k[2](lambda*alpha[1]*k[1]+alpha[2](k[1]*lambda^2-2*k[1]-2))-k[1]*(-alpha[1]+lambda*alpha[2])*lambda(2+5*k[2])^2+lambda^5*alpha[2]*k[1]*k[2]-alpha[1]*k[1]*lambda^4*k[2]-2*lambda^3*alpha[2]*k[2]+(2*k[1]+2*alpha[1]*k[2])*lambda^2+(4*alpha[2]*(1+k[2])*k[1]+4*alpha[2]+4*k[2]*alpha[2]+2)*lambda-(4*(1+k[1]))*(alpha[1]+alpha[1]*k[2]+1/2))*x

 

I am looking to simplify this long term...

could you help me please to find a solution for this issue...

I would like to thank you in advance

Best regards,

D.L.

solve({[(alpha[1]-alpha[2]*lambda)*sqrt(x)+p[2]*lambda]*[k[1]*(1-lambda^2)+2] = p[1]*(2*k[1]*(1-lambda^2)+2), [(alpha[2]-alpha[1]*lambda)*sqrt(x)+p[1]*lambda]*[k[2]*(1-lambda^2)+2] = p[2]*(2*k[2]*(1- lambda^2)+2)}, [p[1], p[2]])

Warning, solutions may have been lost

 

 

could you help me please to find a solution for this issue...

I would like to thank you in advance 

Best regards,

D.L.

 

 

Page 1 of 1